Назад

Олимпиадная задача по арифметической прогрессии: степень 10 и спрятанные цифры

Задача

Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.

Решение

  Пусть первое число  A1 = a1...am,  а разность прогрессии  D = d1...dk.

  Рассмотрим число n, гораздо большее чем m и k. Положим  i = 1 + 10n.  Тогда в i-м члене     подчёркнуто число     Но это можно сделать (так как  a1 ≠ 0)  только в случае, когда  a1 = 1,  а D оканчивается на       "Расположить" в этом числе число     можно только если  k – m = 0.  Следовательно,  D = 10m–1.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет