Олимпиадные задачи из источника «16 турнир (1994/1995 год)» для 8 класса
16 турнир (1994/1995 год)
НазадНатуральные числа <i>а, b, c</i> и <i>d</i> таковы, что <i>ab = cd</i>. Может ли число <i>a + b + c + d</i> оказаться простым?
Прямая отсекает от правильного 10-угольника <i>ABCDEFGHIJ</i> со стороной 1 треугольник <i>PAQ</i>, в котором <i>PA + AQ</i> = 1.
Найдите сумму углов, под которыми виден отрезок <i>PQ</i> из вершин <i>B, C, D, E, F, G, H, I, J</i>.
Дан равносторонний треугольник <i>ABC</i>. Для произвольной точки <i>P</i> внутри треугольника рассмотрим точки <i>A'</i> и <i>C'</i> пересечения прямых <i>AP</i> с <i>BC</i> и <i>CP</i> с <i>AB</i>. Найдите геометрическое место точек <i>P</i>, для которых отрезки <i>AA'</i> и <i>CC'</i> равны.
Треугольник <i>ABC</i> вписан в окружность с центром <i>O</i>. Прямые <i>AC</i> и <i>BC</i> вторично пересекают окружность, проходящую через точки <i>A, O</i> и <i>B</i>, в точках <i>E</i> и <i>K</i>. Докажите, что прямые <i>OC</i> и <i>EK</i> перпендикулярны.
Известно, что вершины квадрата <i>T</i> принадлежат прямым, содержащим стороны квадрата <i>P</i>, а вписанная окружность квадрата <i>T</i> совпадает с описанной окружностью квадрата <i>P</i>. Найдите углы восьмиугольника, образованного вершинами квадрата <i>P</i> и точками касания окружности со сторонами квадрата <i>T</i>, и величины дуг, на которые вершины восьмиугольника делят окружность.
В треугольник <i>ABC</i> вписана окружность с центром <i>O</i>. Медиана <i>AD</i> пересекает её в точках <i>X</i> и <i>Y</i>. Найдите угол <i>XOY</i>, если <i>AC = AB + AD</i>. <small>Также доступны документы в формате <a href="https://problems.ru/images/problem_108067_img_4.gif">TeX</a></small>
Диагонали трапеции <i>ABCD</i> пересекаются в точке <i>K</i>. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка <i>K</i> лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки <i>K</i>, равны.
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.
На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.
Докажите, что число вида <i>a</i>0...09 – не полный квадрат (при любом числе нулей, начиная с одного; <i>a</i> – цифра, отличная от 0).
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если <i>A</i> прыгает через <i>B</i> в точку <i>A</i><sub>1</sub>, то векторы <img align="top" src="/storage/problem-media/98261/problem_98261_img_2.gif"> и <img align="top" src="/storage/problem-media/98261/problem_98261_img_3.gif"> равны). Докажите, что три кузнечика не могут оказаться
а) на одной прямой, параллельной стороне квадрата;
б) на одной произвольной прямой.
На отрезке [0, 1] числовой оси расположены четыре точки: <i>a, b, c, d</i>.
Докажите, что найдётcя такая точка <i>x</i>, принадлежащая [0, 1], что <img align="absmiddle" src="/storage/problem-media/98260/problem_98260_img_2.png">
Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
а) достаточно четырёх взвешиваний и
б) недостаточно трёх.
Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)
Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).
Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если <i>A</i> прыгает через <i>B</i> в точку <i>A</i><sub>1</sub>, то <i>AB = BA</i><sub>1</sub>). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.
У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.
Периоды двух последовательностей – <i>m</i> и <i>n</i> – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
Докажите, что для любых положительных чисел <i>а</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> справедливо неравенство
<img align="absmiddle" src="/storage/problem-media/98245/problem_98245_img_2.gif">
Коэффициенты квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?
Пусть <i>a, b, c, d</i> – такие вещественные числа, что <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = <i>a + b + c + d</i> = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.
Докажите, что из шести ребер тетраэдра можно сложить два треугольника.
Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, но большинство (не меньше 80%) – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)