Олимпиадные задачи по математике
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
На отрезке [0, 1] числовой оси расположены четыре точки: <i>a, b, c, d</i>.
Докажите, что найдётcя такая точка <i>x</i>, принадлежащая [0, 1], что <img align="absmiddle" src="/storage/problem-media/98260/problem_98260_img_2.png">
Докажите, что для любых положительных чисел <i>а</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> справедливо неравенство
<img align="absmiddle" src="/storage/problem-media/98245/problem_98245_img_2.gif">
Пусть <i>a, b, c, d</i> – такие вещественные числа, что <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = <i>a + b + c + d</i> = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.
Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.
Пусть <i>m, n</i> и <i>k</i> – натуральные числа, причём <i>m > n</i>. Какое из двух чисел больше: <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_2.gif"> или <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_3.gif"> (В каждом выражении <i>k</i> знаков квадратного корня, <i>m</i> и <i>n</i> чередуются.)
Дано натуральное число <i>n</i>. Рассматриваются такие тройки различных натуральных чисел (<i>a, b, c</i>), что <i>a + b + c = n</i>. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через <i>K</i>(<i>n</i>). Докажите, что
а) <i>K</i>(<i>n</i>) > <sup><i>n</i></sup>/<sub>6</sub> – 1;
б) <i>K</i>(<i>n</i>) < <sup>2<i>n</i></sup>/<sub>9</sub>.
Дана невозрастающая последовательность неотрицательных чисел <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ <i>a</i><sub>3</sub> ≥ ... ≥ <i>a</i><sub>2<i>k</i>+1</sub> ≥ 0.
Докажите неравенство: <img align="absmiddle" src="/storage/problem-media/97905/problem_97905_img_2.gif">
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
а) Можно ли это сделать так, чтобы в каждой строке и в каждом столбце встречалось не более четырёх различных цифр?
б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.
Набор чисел <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A</i><sub>100</sub> получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
<i>B</i><sub>1</sub> = <i>A</i><sub>1</sub>, <i>B</i><sub>2</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2</sub>, <i>B</i><sub>3</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2</sub> + <i>A</i><sub>3</sub>, ..., <i>B</i><sub>100</sub> = <i>A</i><sub>1</sub> + <i>A</i><sub>2...
Точка <i>P</i> расположена внутри квадрата <i>ABCD</i>, причём <!-- MATH $AP:BP:CP = 1:2:3$ --> <i>AP</i> : <i>BP</i> : <i>CP</i> = 1 : 2 : 3. Найдите угол <i>APB</i>.
На плоскости даны прямая <i>l</i> и две точки <i>A</i> и <i>B</i> по одну сторону от неё. На прямой <i>l</i> выбраны точка <i>M</i>, сумма расстояний от которой до точек <i>A</i> и <i>B</i> наименьшая, и точка <i>N</i>, для которой <i>AN = BN</i>. Докажите, что точки <i>A, B, M, N</i> лежат на одной окружности.