Олимпиадные задачи из источника «13 турнир (1991/1992 год)» для 2-9 класса - сложность 2 с решениями
13 турнир (1991/1992 год)
НазадСтороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.
В трапеции <i>ABCD</i> (<i>AD</i> – основание) диагональ <i>AC</i> равна сумме оснований, а угол между диагоналями равен 60°.
Докажите, что трапеция равнобедренная.
Во вписанном четырёхугольнике <i>ABCD</i> длины сторон <i>BC</i> и <i>CD</i> равны. Докажите, что площадь этого четырёхугольника равна ½ <i>AC</i>² sin∠<i>A</i>.
В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>D</i>, отличная от <i>B</i>, причём <i>AD</i> : <i>DC = AB</i> : <i>BC</i>. Докажите, что угол <i>C</i> тупой.
Внутри угла расположены две окружности с центрами <i>A</i> и <i>B</i>. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром <i>AB</i> касается сторон угла.
Докажите, что произведение всех целых чисел от 2<sup>1917</sup> + 1 до 2<sup>1991</sup> – 1 включительно не есть квадрат целого числа.
По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число <i>A</i>, что в любом таком наборе чисел каждое из чисел не превышает <i>A</i>.
Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.
<i>n</i> чисел (<i>n</i> > 1) называются <i>близкими</i>, если каждое из них меньше чем сумма всех чисел, делённая на <i>n</i> – 1. Пусть <i>a, b, c, ... – n</i> близких чисел, <i>S</i> – их сумма. Докажите, что
а) все они положительны;
б) <i>a + b > c</i>;
в) <i>a + b > <sup>S</sup></i>/<sub><i>n</i>–1</sub>.
Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число <i>A</i>, что при любом таком разбиении каждая из семи дуг содержит не меньше <i>A</i>°.
У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30×70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см.
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
В лес за грибами пошли 11 девочек и <i>n</i> мальчиков. Вместе они собрали <i>n</i>² + 9<i>n</i> – 2 гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?
В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.
Докажите, что
<img align="middle" src="/storage/problem-media/98103/problem_98103_img_2.gif">
На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?
Окружность <i>S</i><sub>2</sub> проходит через центр <i>O</i> окружности <i>S</i><sub>1</sub> и пересекает её в точках <i>A</i> и <i>B</i>. Через точку <i>A</i> проведена касательная к окружности <i>S</i><sub>2</sub>. Точка <i>D</i> – вторая точка пересечения этой касательной с окружностью <i>S</i><sub>1</sub>. Докажите, что <i>AD = AB</i>.
Последовательность {<i>a<sub>n</sub></i>} определяется правилами: <i>a</i><sub>0</sub> = 9, <img align="absmiddle" src="/storage/problem-media/35392/problem_35392_img_2.gif"> .
Докажите, что в десятичной записи числа <i>a</i><sub>10</sub> содержится не менее 1000 девяток.