Олимпиадные задачи из источника «IX Олимпиада по геометрии имени И.Ф. Шарыгина (2013 г.)» для 5-9 класса - сложность 3 с решениями

Дан вписанный четырёхугольник, острый угол между диагоналями которого равен φ. Докажите, что острый угол между диагоналями любого другого четырёхугольника с теми же длинами сторон (идущими в том же порядке) меньше φ.

а) В треугольник <i>ABC</i> вписаны треугольники <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub> так, что  <i>C</i><sub>1</sub><i>A</i><sub>1</sub> ⊥ <i>BC</i>,  <i>A</i><sub>1</sub><i>B</i><sub>1</sub> ⊥ <i>CA</i>,  <i>B</i><sub>1</sub><i>C</i><sub>1</sub> ⊥ <i>AB</i>,  <i>B</i><sub>2</sub><i>A</i><sub>2</sub> ⊥ <i>BC</i>,  &...

Точки <i>M, N</i> – середины диагоналей <i>AC, BD</i> прямоугольной трапеции <i>ABCD</i>  (∠<i>A</i> = ∠<i>D</i> = 90°).  Описанные окружности треугольников <i>ABN, CDM</i> пересекают прямую <i>BC</i> в точках <i>Q, R</i>. Докажите, что точки <i>Q, R</i> равноудалены от середины отрезка <i>MN</i>.

Пусть <i>A</i><sub>1</sub> и <i>C</i><sub>1</sub> – точки касания вписанной окружности со сторонами <i>BC</i> и <i>AB</i> соответственно, а <i>A'</i> и <i>C'</i> – точки касания вневписанной окружности треугольника, вписанной в угол <i>B</i>, с продолжениями сторон <i>BC</i> и <i>AB</i> соответственно. Докажите, что ортоцентр <i>H</i> треугольника <i>ABC</i> лежит на <i>A</i><sub>1</sub><i>C</i><sub>1</sub> тогда и только тогда, когда прямые <i>A'C</i><sub>1</sub> и <i>BA</i> перпендикулярны.

На каждой стороне треугольника <i>ABC</i> отмечены две различные точки. Известно, что это основания высот и биссектрис.   а) Пользуясь только линейкой без делений, определите, где высоты, а где биссектрисы.  б) Решите пункт а), проведя только три прямых.

Вписанная окружность треугольника <i>ABC</i> касается стороны <i>AB</i> в точке <i>C'</i>. Вписанная окружность треугольника <i>ACC'</i> касается сторон <i>AB</i> и <i>AC</i> в точках <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub>; Вписанная окружность треугольника <i>BCC'</i>, касается сторон <i>AB</i> и <i>BC</i> в точках <i>C</i><sub>2</sub>, <i>A</i><sub>2</sub>. Докажите, что прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub>, <i>A</i><sub>2</sub><i>C</i><sub>2</sub> и <i>CC&#...

Пусть <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub> – точки касания вневписанных окружностей треугольника <i>ABC</i> со сторонами <i>BC</i> и <i>AC</i> соответственно. Оказалось, что точка, симметричная центру вписанной окружности треугольника относительно середины <i>AB</i>, лежит на описанной окружности треугольника <i>CT</i><sub>1</sub><i>T</i><sub>2</sub>. Найдите угол <i>BCA</i>.

Пусть <i>BD</i> – биссектриса треугольника <i>ABC</i>. Точки <i>I<sub>a</sub>, I<sub>c</sub></i> – центры вписанных окружностей треугольников <i>ABD, CBD</i>. Прямая <i>I<sub>a</sub>I<sub>c</sub></i> пересекает прямую <i>AC</i> в точке <i>Q</i>. Докажите, что  ∠<i>DBQ</i> = 90°.

Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника.

Верно ли, что четырёхугольник – ромб?

Дан неравнобедренный треугольник <i>ABC</i>. Точка <i>O</i> – центр его описанной окружности, а точка <i>K</i> – центр описанной окружности ω треугольника <i>BCO</i>. Высота треугольника <i>ABC</i>, проведенная из точки <i>A</i>, пересекает окружность ω в точке <i>P</i>. Прямая <i>PK</i> пересекает описанную окружность треугольника <i>ABC</i> в точках <i>E</i> и <i>F</i>. Докажите, что один из отрезков <i>EP</i> и <i>FP</i> равен отрезку <i>PA</i>.

Вневписанная окружность, соответствующая вершине <i>A</i> прямоугольного треугольника <i>ABC</i>  (∠<i>B</i> = 90°),  касается продолжений сторон <i>AB, AC</i> в точках <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub> соответственно; аналогично определим точки <i>C</i><sub>1</sub>, <i>C</i><sub>2</sub>. Докажите, что перпендикуляры, опущенные из точек <i>A, B, C</i> на прямые <i>C</i><sub>1</sub><i>C</i><sub>2</sub>, <i>A</i><sub>1</sub><i>C</i><sub>1</sub>, <i>A</i><sub>1</sub><i>A</i><sub>2</sub> со...

Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.

Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

Пусть <i>O</i> – одна из точек пересечения окружностей ω<sub>1</sub> и ω<sub>2</sub>. Окружность ω с центром <i>O</i> пересекает ω<sub>1</sub> в точках <i>A</i> и <i>B</i>, а ω<sub>2</sub> – в точках <i>C</i> и <i>D</i>. Пусть <i>X</i> – точка пересечения прямых <i>AC</i> и <i>BD</i>. Докажите, что все такие точки <i>X</i> лежат на одной прямой.

На сторонах <i>AB</i> и <i>AC</i> треугольника <i>ABC</i> взяты точки <i>E</i> и <i>F</i>. Прямые <i>EF</i> и <i>BC</i> пересекаются в точке <i>S</i>. Точки <i>M</i> и <i>N</i> – середины отрезков <i>BC</i> и <i>EF</i> соответственно. Прямая, проходящая через вершину <i>A</i> и параллельная <i>MN</i>, пересекает <i>BC</i> в точке <i>K</i>. Докажите, что  <i>BK</i> : <i>CK = FS</i> : <i>ES</i>.

Пусть <i>P</i> – произвольная точка на дуге <i>AC</i> описанной окружности треугольника <i>ABC</i>, не содержащей точки <i>B</i>. Биссектриса угла <i>APB</i> пересекает биссектрису угла <i>BAC</i> в точке <i>P<sub>a</sub></i>; биссектриса угла <i>CPB</i> пересекает биссектрису угла <i>BCA</i> в точке <i>P<sub>c</sub></i>. Докажите, что для всех точек <i>P</i> центры описанных окружностей треугольников <i>PP<sub>a</sub>P<sub>c</sub></i> лежат на одной прямой.

Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.

Диагонали выпуклого четырёхугольника <i>ABCD</i> пересекаются в точке <i>L</i>. В треугольнике <i>ABL</i> отметили точку пересечения высот <i>H</i>, а в треугольниках <i>BCL, CDL</i> и <i>DAL</i> – центры <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub> и <i>O</i><sub>3</sub> описанных окружностей. Затем весь рисунок, кроме точек <i>H, O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub>, стерли. Восстановите его.

В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

Две окружности с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> пересекаются в точках <i>A</i> и <i>B</i>. Биссектриса угла <i>O</i><sub>1</sub><i>AO</i><sub>2</sub> повторно пересекает окружности в точках <i>C</i> и <i>D</i>.

Докажите, что центр <i>O</i> описанной окружности треугольника <i>CBD</i> равноудалён от точек <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка