Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 6 класса - сложность 2-5 с решениями

На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?

Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка. <div align="center"><img src="/storage/problem-media/116866/problem_116866_img_2.gif"></div>

На блюде лежали 15 плюшек. Карлсон взял себе в три раза больше плюшек, чем Малыш, а собака Малыша Бимбо – в три раза меньше, чем Малыш. Сколько плюшек осталось на блюде?

Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?

На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.<div align="center"><img src="/storage/problem-media/116859/problem_116859_img_2.gif"></div>

В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, <i>не обязательно положительное</i>. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)<div align="center"><img src="/storage/problem-media/116845/problem_116845_img_2.gif"></div>

Малыш подарил Карлсону 111 конфет. Сколько-то из них они тут же съели вместе, 45% оставшихся конфет пошли Карлсону на обед, а треть конфет, оставшихся после обеда, нашла во время уборки фрёкен Бок. Сколько конфет она нашла?

Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?

Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?

Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.

Покажите, как разрезать фигуру (см. рисунок) на четыре равные части по линиям сетки. <div align="center"><img src="/storage/problem-media/116790/problem_116790_img_2.gif"></div>

Какое из чисел больше:  1 – 2 + 3 – 4 + 5 – ... + 99 – 100  или  1 + 2 – 3 + 4 – 5 + 6 – ... – 99 + 100?

На клетки шахматной доски положили рисовые зёрнышки. Количества зёрнышек на каждых двух клетках, имеющих общую сторону, отличались ровно

на 1. При этом на одной из клеток доски лежало три зёрнышка, а на другой – 17 зёрнышек. Петух склевал все зёрнышки с одной из главных диагоналей доски, а курица – с другой. Сколько зёрен досталось петуху и сколько курице?

Требуется разрезать по клеточкам изображенную на рисунке фигуру на несколько равных частей. Сколько частей может получиться? <div align="center"><img src="/storage/problem-media/116787/problem_116787_img_2.gif"></div>

Коля и Катя учатся в одном классе. Мальчиков в этом классе в два раза больше, чем девочек. У Коли одноклассников на 7 больше, чем одноклассниц. Сколько одноклассниц у Кати?

Расставьте числа  1, 2, 3, ..., 9  в кружочках так, чтобы сумма чисел на каждой стороне треугольника равнялась 17. <div align="center"><img src="/storage/problem-media/116784/problem_116784_img_2.gif"></div>

Мальвина испекла 30 пирожков и угощает ими Пьеро, Буратино, Артемона и Арлекина. Через некоторое время оказалось, что Буратино и Пьеро съели столько же, сколько Артемон и Арлекин, а Пьеро и Артемон – в 6 раз больше, чем Буратино и Арлекин. Какое количество пирожков съел каждый, если Арлекин съел меньше всех остальных? (Все съедали пирожки целиком, и каждый съел хотя бы один пирожок.)

Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?

Квадратный лист размером 6×6 клеток сложили и вырезали из него часть так, как показано на рисунке. Затем этот лист развернули. Нарисуйте развёрнутый лист размером 6×6 клеток и покажите на рисунке сделанные вырезы.<div align="center"><img src="/storage/problem-media/116780/problem_116780_img_2.gif"></div>

Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?

Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.

Сколько фигурок каждого вида получилось?

Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. <div align="center"><img src="/storage/problem-media/116469/problem_116469_img_2.gif"></div>

Из пункта<i>А</i>в пункт<i>В</i>вышел пешеход. Одновременно с ним из<i>В</i>в<i>А</i>выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом<i>А</i>и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь. Сколько времени потратил пешеход на путь из<i>А</i>до<i>В</i>? (Скорости пешехода и велосипедиста постоянны.)

Какие цифры могут стоять на месте букв в примере  <i>AB·C = DE</i>,  если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка