Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 2-11 класса - сложность 1 с решениями

Известно, что  tg <i>A</i> + tg <i>B</i> = 2  и  ctg <i>A</i> + ctg <i>B</i> = 3.  Найдите  tg (<i>A + B</i>).

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>

Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.

Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Сравните числа:  <i>А</i> = 2011·20122012·201320132013  и  <i>В</i> = 2013·20112011·201220122012.

Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>

Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?

В записи   ¼  ¼  ¼  ¼   расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.

Иван, Петр и Сидор ели конфеты. Их фамилии – Иванов, Петров и Сидоров. Иванов съел на 2 конфеты меньше Ивана, Петров – на 2 конфеты меньше Петра, а Петр съел больше всех. У кого из них какая фамилия?

Длина крокодила от головы до хвоста в три раза меньше десяти кэн, а от хвоста до головы равна трем кэн и двум сяку. Известно, что одна сяку равна 30 см. Найдите длину крокодила в метрах. (<i>Кэн и сяку – японские единицы длины</i>.)

В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Про углы треугольника <i>ABC</i> известно, что   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_3.gif"> .   Найдите величину угла <i>C</i>.

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками

равно 1). Чему равен дискриминант этого трёхчлена? <div align="center"><img src="/storage/problem-media/116482/problem_116482_img_2.gif"></div>

После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.

  – Тигры были?

  – Да, причём их было в семь раз больше, чем не тигров.

  – А обезьяны?

  – Да, их было в семь раз меньше, чем не обезьян.

  – А львы были?

Ответьте за Казимира Алмазова.

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

Вычислите:   <img align="absmiddle" src="/storage/problem-media/116475/problem_116475_img_2.gif">

У Пети в бутылке было "Фанты" на 10% больше, чем у Васи. Петя отпил из своей бутылки 11% её содержимого, а Вася из своей – 2% содержимого. У кого после этого осталось больше "Фанты"?

В точке В живёт Винни-Пух, а в точках К, С, П и И – его друзья Кролик, Сова, Пятачок и ослик Иа-Иа (см. рисунок). <div align="center"><img src="/storage/problem-media/116471/problem_116471_img_2.gif"></div>Зимним утром Винни-Пух навестил их всех по одному разу, а потом вернулся домой. При этом он протоптал в снегу пять прямых тропинок от домика к домику, не пересекающих друг друга. Начертите как можно больше возможных маршрутов Винни-Пуха.

Расставьте в равенстве   2 2 2 2 = 5 5 5 5 5   знаки арифметических действий (без использования скобок) так, чтобы оно стало верным.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка