Олимпиадные задачи из источника «глава 22. Выпуклые и невыпуклые многоугольники» для 7-10 класса - сложность 1-4 с решениями

Докажите, что для любого тринадцатиугольника найдется прямая, содержащая ровно одну его сторону, однако при любом<i>n</i>> 13 существует<i>n</i>-угольник, для которого это неверно.

Многоугольник разрезан непересекающимися диагоналями на треугольники. Докажите, что по крайней мере две из этих диагоналей отсекают от него треугольники.

Докажите, что количество треугольников, на которые непересекающиеся диагонали разбивают<i>n</i>-угольник, равно<i>n</i>- 2.

Докажите, что сумма внутренних углов любого<i>n</i>-угольника равна(<i>n</i>- 2) 180<sup><tt>o</tt></sup>.

Докажите, что любой<i>n</i>-угольник можно разрезать на треугольники непересекающимися диагоналями.

Чему равно наибольшее число вершин невыпуклого<i>n</i>-угольника, из которых нельзя провести диагональ?

а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него.

б) Выясните, какое наименьшее число таких диагоналей может иметь <i>n</i>-угольник.

Докажите, что сумма внешних углов любого многоугольника, прилегающих к меньшим180<sup><tt>o</tt></sup>внутренним углам, не меньше360<sup><tt>o</tt></sup>.

Докажите, что если многоугольник таков, что из некоторой точки <i>O</i>виден весь его контур, то из любой точки плоскости полностью видна хотя бы одна его сторона.

а) Нарисуйте многоугольник и точку <i>O</i>внутри его так, чтобы ни одна сторона не была видна из нее полностью. б) Нарисуйте многоугольник и точку <i>O</i>вне его так, чтобы ни одна сторона не была видна из нее полностью.

Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?

Докажите, что выпуклый многоугольник имеет центр симметрии тогда и только тогда, когда его можно представить в виде суммы нескольких отрезков.

а) Докажите, что если<i>M</i><sub>1</sub>и<i>M</i><sub>2</sub>— выпуклые многоугольники, то$\lambda_{1}^{}$<i>M</i><sub>1</sub>+$\lambda_{2}^{}$<i>M</i><sub>2</sub>— выпуклый многоугольник, число сторон которого не превосходит суммы чисел сторон многоугольников<i>M</i><sub>1</sub>и<i>M</i><sub>2</sub>. б) Пусть<i>P</i><sub>1</sub>и<i>P</i><sub>2</sub>— периметры многоугольников<i>M</i><sub>1</sub>и<i>M</i><sub>2</sub>. Докажите, что периметр многоугольника$\lambda_{1}^{}$<i>M</i><sub>1</sub>+$\lambda_{2}^{}$<i>M</i>&lt...

Пусть<i>A</i>и<i>B</i>— фиксированные точки,$\lambda$и$\mu$— фиксированные числа. Выберем произвольную точку<i>X</i>и зададим точку<i>P</i>равенством$\overrightarrow{XP}$=$\lambda$$\overrightarrow{XA}$+$\mu$$\overrightarrow{XB}$. Докажите, что положение точки<i>P</i>не зависит от выбора точки<i>X</i>тогда и только тогда, когда$\lambda$+$\mu$= 1. Докажите также, что в этом случае точка<i>P</i>лежит на прямой<i>AB</i>.

Докажите, что если какая-либо хорда выпуклой фигуры$\Phi$делит её на две части равного периметра, но разной площади, то существует выпуклая фигура$\Phi{^\prime}$, имеющая тот же периметр, что и$\Phi$, но большую площадь.

Докажите, что если существует фигура$\Phi{^\prime}$, площадь которой не меньше площади фигуры$\Phi$, а периметр — меньше, то существует фигура того же периметра, что и$\Phi$, но большей площади.

Докажите, что для любой невыпуклой фигуры$\Psi$существует выпуклая фигура с меньшим периметром и большей площадью.

Выпуклый многоугольник<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>лежит внутри окружности<i>S</i><sub>1</sub>, а выпуклый многоугольник<i>B</i><sub>1</sub>...<i>B</i><sub>m</sub>— внутри<i>S</i><sub>2</sub>. Докажите, что если эти многоугольники пересекаются, то одна из точек<i>A</i><sub>1</sub>, ...,<i>A</i><sub>n</sub>лежит внутри<i>S</i><sub>2</sub>или одна из точек<i>B</i><sub>1</sub>, ...,<i>B</i><sub>m</sub>лежит внутри<i>S</i><sub>1</sub>.

Назовем выпуклый семиугольник<i>особым</i>, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Среди всех таких чисел <i>n</i>, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части)<i>n</i>треугольников, найдите наименьшее.

На плоскости дано несколько правильных<i>n</i>-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее <i>n</i>углов.

Внутри квадрата<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>лежит выпуклый четырёхугольник<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>. Внутри<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>выбрана точка<i>A</i><sub>9</sub>. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугол...

На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника.

На плоскости дано <i>n</i>точек, причем любые четыре из них являются вершинами выпуклого четырехугольника. Докажите, что эти точки являются вершинами выпуклого<i>n</i>-угольника.

На плоскости дано <i>n</i>точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все <i>n</i>точек можно накрыть кругом радиуса 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка