Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» - сложность 3 с решениями

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

Найти все пары целых чисел  (<i>x, y</i>),  удовлетворяющие уравнению   3·2<sup><i>x</i></sup> + 1 = <i>y</i>².

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),<nobr>а) проигрывает;</nobr><nobr>б) выигрывает.</nobr>Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

Докажите, что при любом простом  <i>p</i>   <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif">   делится на <i>p</i>.

Докажите, что если  <i>x + y + z ≥ xyz</i>,  то  <i>x</i>² + <i>y</i>² + <i>z</i>² ≥ <i>xyz</i>.

<i>a, b, c, d</i> – положительные числа. Докажите, что по крайней мере одно из неравенств

  1)  <i>a + b < c + d</i>;

  2)  (<i>a + b</i>)<i>cd < ab</i>(<i>c + d</i>);

  3)  (<i>a + b</i>)(<i>c + d</i>) < <i>ab + cd</i>

неверно.

Вокруг экватора натянули верёвку. Затем её удлинили на 1 см и опять натянули, приподняв в одном месте.

Сможет ли человек пройти в образовавшийся зазор?

Сумма положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> равна ½. Докажите, что   <img align="MIDDLE" src="/storage/problem-media/30908/problem_30908_img_2.gif">

<i>n</i> – натуральное число. Докажите, что  <i>n<sup>n</sup></i> > (<i>n</i> + 1)<sup><i>n</i>–1</sup>.

Докажите, что   <img align="absMIDDLE" src="/storage/problem-media/30893/problem_30893_img_2.gif">.

Решите уравнение  <i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>² – <i>ab – bc – cd – d</i> + <sup>2</sup>/<sub>5</sub> = 0.

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   <i>a, b, c , d e</i> ≥ 0 имеет место неравенство <div align="CENTER" class="mathdisplay"><img width="206" height="53" align="MIDDLE" border="0" src="/storage/problem-media/30881/problem_30881_img_2.gif"> </div>

Рассмотрим число   <img align="absMIDDLE" src="/storage/problem-media/30859/problem_30859_img_2.gif">   Докажите, что оно а) меньше <sup>1</sup>/<sub>10</sub>;   б) меньше <sup>1</sup>/<sub>12</sub>;   в) больше <sup>1</sup>/<sub>15</sub>.

Найдите наибольшее из чисел  5<sup>100</sup>, 6<sup>91</sup>, 7<sup>90</sup>, 8<sup>85</sup>.

Докажите, что  4<sup>79</sup> < 2<sup>100</sup> + 3<sup>100</sup> < 4<sup>80</sup>.

Докажите, что из набора 0, 1, 2, ...,  ½ (3<sup><i>k</i></sup> – 1)  можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.

Докажите, что из набора 0, 1, 2, ...,  3<sup><i>k</i></sup> – 1  можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.

Кащей Бессмертный загадывает три двузначных числа:<i>a</i>,<i>b</i>и<i>c</i>. Иван Царевич должен назвать ему три числа:<i>X</i>,<i>Y</i>,<i>Z</i>, после чего Кащей сообщит ему сумму<i>aX</i> + <i>bY</i> + <i>cZ</i>. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Как ему спастись?

Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть только на одну чашку весов?

Сформулируйте (и докажите) условие, позволяющее определить четность числа по его записиа) в троичной системе счисления;б) в системе счисления с основанием <i>n</i>.

В некотором государстве 101 город. а) Каждый город соединен с каждым из остальных дорогой с односторонним движением, причём в каждый город входит 50 дорог и из каждого города выходит 50 дорог. Докажите, что из каждого города можно доехать в любой другой, проехав не более чем по двум дорогам. б) Некоторые города соединены дорогами с односторонним движением, причём в каждый город входит 40 дорог и из каждого города выходит 40 дорог. Докажите, что из каждого города можно добраться до любого другого, проехав не более чем по трём дорогам.

20 команд сыграли круговой турнир по волейболу.

Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.

В некоторой стране каждый город соединён с каждым дорогой с односторонним движением.

Докажите, что найдётся город, из которого можно добраться в любой другой.

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.

Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка