Олимпиадные задачи по теме «Доказательство от противного» для 6 класса

В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?

В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Существуют ли такие двузначные числа  <span style="text-decoration: overline;"><i>ab</i></span>,  <span style="text-decoration: overline;"><i>cd</i></span>,  что  <span style="text-decoration: overline;"><i>ab</i></span>·<span style="text-decoration: overline;"><i>cd</i></span> = <span style="text-decoration: overline;"><i>abcd</i></span>.

Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? (Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?

Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа <i>k</i> имеется бесконечно много точек этого цвета, координаты которых делятся на <i>k</i>.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?

Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?

Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.

Состоялся матч по футболу 10 на 10 игроков между командой лжецов (которые всегда лгут) и командой правдолюбов (которые всегда говорят правду). После матча каждого игрока спросили: "Сколько голов ты забил?" Некоторые участники матча ответили "один", Миша сказал "два", некоторые ответили "три", а остальные сказали "пять". Лжёт ли Миша, если правдолюбы победили со счётом  20 : 17?

В турнире по волейболу каждая команда встречалась с каждой по одному разу. Каждая встреча состояла из нескольких партий – до трёх побед одной из команд. Если встреча заканчивалась со счётом  3 : 0  или  3 : 1,  то выигравшая команда получала 3 очка, а проигравшая – 0. Если же счёт партий был

3 : 2,  то победитель получал 2 очка, а побеждённый – 1 очко. По итогам турнира оказалось, что команда "Хитрецы" набрала больше всех очков, а команда "Простаки" – меньше всех. Но "Хитрецы" выиграли меньше встреч, чем проиграли, а у "Простаков" наоборот, победных встреч оказалось больше, чем проигранных. При каком наименьшем количестве команд такое возможно?

Можно ли так расставить цифры 1, 2, ..., 8 в клетках   а) буквы Ш;   б) полоски (см. рис.), чтобы при любом разрезании фигуры на две части сумма всех цифр в одной из частей делилась на сумму всех цифр в другой? (Резать можно только по границам клеток. В каждой клетке должна стоять одна цифра, каждую цифру можно использовать только один раз.) <div align="center"><img src="/storage/problem-media/65980/problem_65980_img_2.gif"></div>

Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире?

Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

Незнайка хочет записать по кругу 2015 натуральных чисел так, чтобы для каждых двух соседних чисел частное от деления большего на меньшее было простым числом. Знайка утверждает, что это невозможно. Прав ли Знайка?

Можно ли в кружках (см. рисунок) разместить различные натуральные числа таким образом, чтобы суммы трёх чисел вдоль каждого отрезка оказались равными?<div align="center"><img src="/storage/problem-media/64941/problem_64941_img_2.gif"></div>

Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны.

Может ли быть, что лесник ни разу не ошибся? <div align="center"><img src="/storage/problem-media/64816/problem_64816_img_2.gif"></div>

На русско-французской встрече не было представителей других стран. Суммарное количество денег у французов оказалось больше суммарного количества денег у россиян, и суммарное количество денег у женщин оказалось больше суммарного количества денег у мужчин.

Обязательно ли на встрече была француженка?

В шахматном турнире каждый из восьми участников сыграл с каждым. В случае ничьей (и только в этом случае) партия ровно один раз переигрывалась и результат переигровки заносился в таблицу. Барон Мюнхгаузен утверждает, что в итоге два участника турнира сыграли по 11 партий, один – 10 партий, три – по 8 партий и два – по 7 партий. Может ли он оказаться прав?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка