Олимпиадные задачи по математике
На микросхеме $2025$ различных элементов, некоторые пары из которых соединены проводами. Жора хочет раскидать элементы по $n$ платам так, чтобы никакие два элемента одной платы не были соединены проводами. Жора посчитал, что если плат будет всего две, то у него будет $2$ способа, а если плат $2025$ – то $2025~\cdot~2024^{2024}$ способов. Сколько проводов на микросхеме? <i>Все элементы и все платы разные, какие-то из плат могут не содержать элементов. Способы считаются разными, если хотя бы один элемент в способах находится на разных платах.</i>
Внутри куба отмечены $10$ точек. Жора хочет выбрать натуральное число $n$ и разбить куб на $n^3$ одинаковых кубиков так, чтобы каждая отмеченная точка оказалась внутри (но не на границе) какого-то кубика. При каком наименьшем $M$ Жора гарантированно сможет выбрать число, не большее $M$?
а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов <i>против часовой стрелки</i> и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?
Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?
<img src="/storage/problem-media/67331/problem_67331_img_2.png">
б) У...
В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.
Саша написал на доске несколько двузначных чисел в порядке возрастания, а после этого заменил одинаковые цифры на одинаковые буквы, а разные цифры – на разные буквы. У него получилось (в том же порядке) АС, АР, ЯР, ЯК, ОК, ОМ, УМ, УЖ, ИЖ, ИА Восстановите цифры.
В игре Тантрикс-солитер возможны фишки 14 типов:<img src="/storage/problem-media/66767/problem_66767_img_2.png"> Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»: <img src="/storage/problem-media/66767/problem_66767_img_3.png"> Саша потерял фишку <img src="/storage/problem-media/66767/problem_66767_img_4.png">. Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не...
Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:<table align="center" border="1" text-align="center"> <tr> <td> $,$5 </td><td> $,$6 </td><td> $,$7 </td><td> $,$8 </td><td> $,$9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td><td> 16 </td><td> 17 </td><td> 18 </td><td> 19 </td><td> 20 </td><td> 21 </td><td>...
Высота каждой из 2019 ступенек «лестницы» (см. рисунок) равна 1, а ширина увеличивается от 1 до 2019. Правда ли, что отрезок, соединяющий левую нижнюю и правую верхнюю точки этой лестницы, не пересекает лестницу? <img src="/storage/problem-media/66631/problem_66631_img_2.png">
Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.
Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным.<b> В этом предложении ______________________ гласных букв.</b>
На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася?
Саша и Илья должны были пробежать 600 метров. Но Саша первую половину <i>времени</i> бежал, а вторую – шёл. А Илья первую половину <i>дистанции</i> бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?
В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?
Замените буквы цифрами (все цифры должны быть различными) так, чтобы получилось верное равенство: <i>A</i> : <i>B</i> : <i>C</i> + <i>D</i> : <i>E</i> : <i>F</i> + <i>G</i> : <i>H</i> : <i>I</i> = 1.
На сторонах <i>AB</i>, <i>AC</i> треугольника <i>ABC</i> взяли такие точки <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно, что <i>BB</i><sub>1</sub> ⊥ <i>CC</i><sub>1</sub>. Точка <i>X</i> внутри треугольника такова, что
∠<i>XBC</i> = ∠<i>B</i><sub>1</sub><i>BA</i>, ∠<i>XCB</i> = ∠<i>C</i><sub>1</sub><i>CA</i>. Докажите, что ∠<i>B</i><sub>1</sub><i>XC</i><sub>1</sub> = 90° – ∠<i>A</i>.
Обозначим через <i>S</i>(<i>k</i>) сумму цифр натурального числа <i>k</i>. Натуральное число <i>a</i> назовём <i>n-хорошим</i>, если существует такая последовательность натуральных чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>, что <i>a<sub>n</sub> = a</i> и <i>a</i><sub><i>i</i>+1</sub> = <i>a<sub>i</sub> – S</i>(<i>a<sub>i</sub></i>) при всех <i>i</i> = 0, 1, ..., <i>n</i> – 1. Верно ли, что для любого натурального <i>n</i> существует натуральное число, являющееся <i>n<...
В турнире по футболу участвует 2<i>n</i> команд (<i>n</i> > 1). В каждом туре команды разбиваются на <i>n</i> пар и команды в каждой паре играют между собой. Так провели 2<i>n</i> – 1 тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.
Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок).<div align="center"><img src="/storage/problem-media/65099/problem_65099_img_2.jpg"></div>