Олимпиадные задачи по теме «Комбинаторика» для 6-11 класса - сложность 1-5 с решениями
Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)
На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?
Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова <i>ИНТЕГРИРОВАНИЕ</i>, а Маша сделала то же самое со словом <i>СУПЕРКОМПЬЮТЕР</i>. У кого получилось больше слов?
При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?
На какую наибольшую степень двойки делится число 10<sup>20</sup> – 2<sup>20</sup>?
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по <i>х</i> очков.
Каково наибольшее возможное значение <i>х</i>? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)
Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(<i>n</i> – 1) углов (то есть точек пересечения пары парабол).
Изначально на доске были написаны одночленs 1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>. Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены <i>S</i><sub>1</sub> = 1 + <i>x, S</i><sub>2</sub> = 1 + <i>x + x</i>², <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>, ..., <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>. Докажите...
В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.
В команде сторожей у каждого есть разряд (натуральное число). Сторож <i>N</i>-го разряда <i>N</i> суток дежурит, потом <i>N</i> суток спит, снова <i>N</i> суток дежурит, <i>N</i> – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)
Обозначим через <i>S</i>(<i>n</i>, <i>k</i>) количество не делящихся на <i>k</i> коэффициентов разложения многочлена (<i>x</i> + 1)<i><sup>n</sup></i> по степеням <i>x</i>.
а) Найдите <i>S</i>(2012, 3).
б) Докажите, что <i>S</i>(2012<sup>2011</sup>, 2011) делится на 2012.
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2<i><sup>k</sup></i>}, а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
<img align="right" src="/storage/problem-media/116673/problem_116673_img_2.gif">Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)
Клетки доски размером 5×5 раскрашены в шахматном порядке (угловые клетки – чёрные). По чёрным клеткам этой доски двигается фигура – мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.