Назад

Олимпиадная задача: 1006 различных 2012-угольников с общими вершинами

Задача

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Решение

Рассмотрим одну из вершин – A. Из неё можно выпустить не более 2011 отрезков, соединяющих её с другими вершинами. Но в каждом из 2012-угольников из A выходит две стороны. Значит, таких многоугольников не больше 1005.

Ответ

Нельзя.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет