Олимпиадные задачи по теме «Треугольник Паскаля и бином Ньютона» - сложность 2 с решениями
Треугольник Паскаля и бином Ньютона
НазадНа какую наибольшую степень двойки делится число 10<sup>20</sup> – 2<sup>20</sup>?
Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?
Докажите равенство <img align="absmiddle" src="/storage/problem-media/109154/problem_109154_img_2.gif">
Рассматривается числовой треугольник: <div align="center"><img src="/storage/problem-media/98176/problem_98176_img_2.gif"></div>(первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.
Доказать, что не существует таких натуральных чисел <i>x, y, z, k</i>, что <i>x<sup>k</sup> + y<sup>k</sup> = z<sup>k</sup></i> при условии <i>x < k, y < k</i>.
Найти корни уравнения <img align="absmiddle" src="/storage/problem-media/77992/problem_77992_img_2.gif">
Докажите, что 2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup> при целом <i>n</i> ≥ 2 и |<i>x</i>| < 1.
В числовом треугольнике <div align="center"><img src="/storage/problem-media/76551/problem_76551_img_2.gif"></div>каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.
Каждое неотрицательное целое число представимо, причём единственным образом, в виде <img align="absmiddle" src="/storage/problem-media/73613/problem_73613_img_2.gif"> где <i>x</i> и <i>y</i> – целые неотрицательные числа. Докажите это.
Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?
Даны многочлены <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение <i>P</i>(<i>x</i>) = <i>Q</i>(<i>x</i>) не имеет действительных корней. Докажите, что уравнение <i>P</i>(<i>x</i> +1) = <i>Q</i>(<i>x –</i> 1) имеет хотя бы один действительный корень.
а) Определение (смотри в <a href="https://problems.ru/thes.php?letter=12#gaussa">справочнике</a>) функций <i>g<sub>k,l</sub></i>(<i>x</i>) не позволяет вычислять их значения при <i>x</i> = 1. Но, поскольку функции <i>g<sub>k,l</sub></i>(<i>x</i>) являются многочленами, они определены и при <i>x</i> = 1. Докажите равенство <img align="absmiddle" src="/storage/problem-media/61523/problem_61523_img_2.gif"> б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи <a href="https://mirolimp.ru/tasks/161522">161522</a> подставить значение <i>x</i> = 1?
Вычислите производящие функции следующих последовательностей:
а) <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_3.gif">
Найдите у чисел а) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_2.gif">)<sup>1999</sup>; б) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>1999</sup>; в) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>2000</sup> первые 1000 знаков после запятой.
Используя разложение (1 + <i>i</i>)<sup><i>n</i></sup> по формуле бинома Ньютона, найдите:
а) <img align="absmiddle" src="/storage/problem-media/61126/problem_61126_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/61126/problem_61126_img_3.gif">
Докажите, что если <i>a + b + c</i> = 0, то 2(<i>a</i><sup>5</sup> + <i>b</i><sup>5</sup> + <i>c</i><sup>5</sup>) = 5<i>abc</i>(<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup> + <i>c</i><sup>2</sup>).
При каких натуральных <i>n</i> число (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> + 1)<sup><i>n</i></sup> – (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> – 1)<sup><i>n</i></sup> будет целым?
<b>Малая теорема Ферма</b>. Пусть <i>p</i> – простое число и <i>p</i> не делит <i>a</i>. Тогда <i>a</i><sup><i>p</i>–1</sup> ≡ 1 (mod <i>p</i>).
Докажите теорему Ферма, разлагая (1 + 1 + ... + 1)<sup><i>p</i></sup> посредством полиномиальной теоремы (см. задачу <a href="https://mirolimp.ru/tasks/160400">160400</a>).
Докажите, что если <i>p</i> – простое число, то (<i>a</i> + <i>b</i>)<sup><i>p</i></sup> – <i>a<sup>p</sup> – b<sup>p</sup></i> делится на <i>p</i> при любых целых <i>a</i> и <i>b</i>.
Докажите, что если <i>p</i> – простое число и 1 ≤ <i>k ≤ p</i> – 1, то <img align="absmiddle" src="/storage/problem-media/60668/problem_60668_img_2.gif"> делится на <i>p</i>.
<div align="CENTER"> <table cellpadding="3"> <tr><td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER">1</td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </...
Вычислите сумму: <img align="absmiddle" src="/storage/problem-media/60582/problem_60582_img_2.gif">
Докажите равенство: <img align="absmiddle" src="/storage/problem-media/60581/problem_60581_img_2.gif">
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)
Докажите следующий вариант <i>формулы Бине</i>: <img align="absmiddle" src="/storage/problem-media/60579/problem_60579_img_2.gif">
<div align="center"><img src="/storage/problem-media/60424/problem_60424_img_2.gif"></div>Здесь изображен фрагмент таблицы, которая называется<i>треугольником Лейбница</i>. Его свойства "аналогичны в смысле противоположности" свойствам треугольника Паскаля. Числа на границе треугольника обратны последовательным натуральным числам. Каждое число внутри равно сумме двух чисел, стоящих под ним. Найдите формулу, которая связывает числа из треугольников Паскаля и Лейбница.