Олимпиадные задачи по теме «Геометрия» для 6-10 класса - сложность 2 с решениями

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)

Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?

Биссектрисы треугольника <i>ABC</i> пересекаются в точке <i>I</i>,  ∠<i>ABC</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> отмечены соответственно точки <i>P</i> и <i>Q</i> так, что  <i>AP = CQ = AC</i>.  Докажите, что угол <i>PIQ</i> – прямой.

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>

Точка <i>А</i> лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), <i>В</i> – наиболее удалённая от неё точка на окружности нижнего основания, <i>С</i> – произвольная точка окружности нижнего основания. Найдите <i>АВ</i>, если  <i>АС</i> = 12,  <i>BC</i> = 5. <div align="center"><img src="/storage/problem-media/116998/problem_116998_img_2.gif"></div>

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).

Сколько существует треугольников с вершинами в отмеченных точках?

Центр <i>О</i> окружности, описанной около четырёхугольника <i>АВСD</i>, лежит внутри него. Найдите площадь четырёхугольника, если  ∠<i>ВАО</i> = ∠<i>DAC,

AC = m,  BD = n</i>.

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.

Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>K</i> и проведены биссектриса <i>KE</i> треугольника <i>AKC</i> и высота <i>KH</i> треугольника <i>BKC</i>. Оказалось, что угол <i>EKH</i> – прямой. Найдите <i>BC</i>, если  <i>HC</i> = 5.

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). <div align="center"><img src="/storage/problem-media/116959/problem_116959_img_2.gif"></div>Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)

Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

На сторонах <i>АВ, ВС</i> и <i>АС</i> равностороннего треугольника <i>АВС</i> выбраны точки <i>K, M</i> и <i>N</i> соответственно так, что угол <i>MKB</i> равен углу <i>MNC</i>, а угол <i>KMB</i> равен углу <i>KNA</i>. Докажите, что <i>NB</i> – биссектриса угла <i>MNK</i>.

В треугольнике <i>ABC</i> медиана, проведённая из вершины <i>A</i> к стороне <i>BC</i>, в четыре раза меньше стороны <i>AB</i> и образует с ней угол 60°. Найдите угол <i>А</i>.

В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Дан тетраэдр <i>ABCD</i>. Точка <i>X</i> выбрана вне тетраэдра так, что отрезок <i>XD</i> пересекает грань <i>ABC</i> во внутренней точке. Обозначим через <i>A', B', C'</i> проекции точки <i>D</i> на плоскости <i>XBC, XCA, XAB</i> соответственно. Докажите, что  <i>A'B' + B'C' + C'A' < DA + DB + DC</i>.

В окружность Ω вписан четырёхугольник <i>ABCD</i>, диагонали <i>AC</i> и <i>BD</i> которого перпендикулярны. На сторонах <i>AB</i> и <i>CD</i> во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.<div align="center"><img src="/storage/problem-media/116915/problem_116915_img_2.gif"></div>

При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка