Олимпиадная задача: Разделите квадрат 7×7 на 9 прямоугольников — комбинаторная геометрия, 5-7 классы
Задача
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
Решение
Разрежем квадрат на три "узких" прямоугольника (1×1, 2×1 и 4×1), три "средних" (1×2, 2×2 и 4×2) и три "широких" (1×4, 2×4 и 4×4).
Из "узких" прямоугольников можно сложить прямоугольник любой высоты от 1 до 7 и ширины 1. Аналогично из "средних" прямоугольников можно сложить прямоугольник любой высоты от 1 до 7 и ширины 2, а из "широких" – прямоугольник любой высоты от 1 до 7 и ширины 4. Из полученных "узкого", "среднего" и "широкого" прямоугольников нужной высоты можно сложить прямоугольник этой высоты и любой ширины от 1 до 7.
Ответ
Cм. рис.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь