Олимпиадные задачи по теме «Средние величины» - сложность 3-4 с решениями

Из гирек весами 1 г, 2 г, ..., <i>N</i> г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что

  а) это можно сделать, если  <i>N</i> + 1  – квадрат целого числа.

  б) если это можно сделать, то  <i>N</i> + 1  – квадрат целого числа.

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.

Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

На отрезке  [0, 2002]  отмечены его концы и точка с координатой <i>d</i>, где <i>d</i> – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа <i>k</i>, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем <i>k</i> существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?

  Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

В вершинах выпуклого <i>n</i>-угольника расставлены <i>m</i> фишек  (<i>m > n</i>).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине <i>n</i>-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно <i>n</i>.

Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.

Показать, что если  <i>a > b</i> > 0,  то разность между средним арифметическим и средним геометрическим этих чисел находится между   <img align="absmiddle" src="/storage/problem-media/109015/problem_109015_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/109015/problem_109015_img_3.gif">

Все имеющиеся на складе конфеты разных сортов разложены по <i>n</i> коробкам, на которые установлены цены в 1, 2, ..., <i>n</i>  у. е. соответственно. Требуется купить такие <i>k</i> из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее <i><sup>k</sup>/<sub>n</sub></i> массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.

  а) Какие коробки следует купить при  <i>n</i> = 10  и  <i>k</i> = 3 ?

  б) Тот же вопрос для произвольных натуральных  <i>n ≥ k</i>.

Антон сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. Затем он решил пробежать вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 150 ступенек. Сколько ступенек он насчитал, спускаясь вместе с милиционером по неподвижному эскалатору?

а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел. б) На доске выписано 100 <i>целых</i> чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны.

Докажите, что у выпуклого 10<i>n</i>-гранника найдётся <i>n</i> граней с одинаковым числом сторон.

Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число <i>Q</i> – показатель его умственных способностей (чем больше <i>Q</i>, тем больше способности). За <i>рейтинг</i> страны принимается среднее арифметическое значений <i>Q</i> всех жителей этой страны.

  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.

  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?

  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После э...

В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.

Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.

(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)

Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды <i>A, B, C</i> и <i>D</i>, что <i>A</i> выиграла у <i>B, C</i> и <i>D</i>; <i>B</i> выиграла у <i>C</i> и <i>D, C</i> выиграла у <i>D</i>.

В волейбольном турнире каждые две команды сыграли по одному матчу.

  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.

  б) Постройте пример такого турнира семи команд.

  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?

Даны два набора из <i>n</i> вещественных чисел:  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>n</sub></i>.  Докажите, что если выполняется хотя бы одно из двух условий:

  а) из  <i>a<sub>i</sub> < a<sub>j</sub></i>  следует, что  <i>b<sub>i</sub> ≤ b<sub>j</sub></i>;

  б) из  <i>a<sub>i</sub> < a < a<sub>j</sub></i>,  где  <i>a</i> = <sup>1</sup>/<sub><i>n</i></sub> (<i>a</i...

Известно, что разность между наибольшим и наименьшим из чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x</i><sub>9</sub>, <i>x</i><sub>10</sub> равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел <i>x</i><sub>1</sub>,  ½ (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>),  &frac13; (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub>),  ...,  <sup>1</sup>/<sub>10</sub> (<i>x</i><sub>1<...

Сумма <i>n</i> положительных чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x<sub>n</sub></i>  равна 1.

Пусть <i>S</i> – наибольшее из чисел   <img align="middle" src="/storage/problem-media/73692/problem_73692_img_2.gif">

Найдите наименьшее возможное значение <i>S</i>. При каких значениях  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>  оно достигается?

Хозяин обещает работнику платить в среднем   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif">   рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif">   Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Для любых <i>n</i> вещественных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> существует такое натуральное  <i>k ≤ n</i>,  что каждое из <i>k</i> чисел <i>a</i><sub><i>k</i></sub>,  ½ (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub>),

&frac13; (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub> + <i>a</i><sub><i>k</i>–2</sub>),  ...,  <sup>1</sup>/<sub><i>k</i></sub> (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</su...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка