Олимпиадные задачи по теме «Последовательности» для 11 класса - сложность 3 с решениями
Последовательности
НазадДана бесконечная последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что
<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ... Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что <i>a<sub>k</sub> = a<sub>k+T</sub></i> при любом натуральном <i>k</i>?
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)
На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.
55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?
Назовём тройку натуральных чисел (<i>a, b, c</i>) <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка (<i>c, b, a</i>) новой тройкой не считается.)
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите а) наименьшее такое число, б) все такие числа.
Пусть $x_1 \le \dots \le x_n$. Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.
Дана последовательность<i> {x<sub>k</sub>} </i>такая, что<i> x<sub>1</sub>=</i>1,<i> x<sub>n+</sub></i>1<i>=n sin x<sub>n</sub>+</i>1. Докажите, что последовательность непериодична.
По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif"> если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном <i>a</i><sub>0</sub> > 5 в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?
Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?
Дана функция<i> f</i>(<i>x</i>)<i>=<img src="/storage/problem-media/109863/problem_109863_img_2.gif"> </i>. Найдите<i>f</i>(<i>.. f</i>(<i>f</i>(19))<i>..</i>)<i></i>95<i> раз</i>.
Числовая последовательность<i> a<sub>0</sub> </i>,<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>, такова, что при всех неотрицательных<i> m </i>и<i> n </i>(<i> m<img src="/storage/problem-media/109861/problem_109861_img_2.gif"> n </i>) выполняется соотношение <center><i>
a<sub>m+n</sub>+a<sub>m-n</sub>=<img src="/storage/problem-media/109861/problem_109861_img_3.gif"></i>(<i>a</i>2<i>m+a</i>2<i>n</i>)<i>.
</i></center> Найдите<i> a</i>1995, если<i> a<sub>1</sub>=</i>1.
Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом <i>T</i>.
Докажите, что исходные дроби имеют периоды не больше <i>T</i>.
Последовательность неотрицательных рациональных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... удовлетворяет соотношению <i>a<sub>m</sub> + a<sub>n</sub> = a<sub>mn</sub></i> при любых натуральных <i>m, n</i>.
Докажите, что не все её члены различны.
Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число; <i>a</i><sub><i>n</i>+1</sub> = ⅕ <i>a<sub>n</sub></i>, если <i>a<sub>n</sub></i> делится на 5;
<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>], если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.
Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>
Назовём натуральные числа <i>похожими</i>, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.
На карусели с <i>n</i> сиденьями мальчик катался <i>n</i> сеансов подряд. После каждого сеанса он вставал и, двигаясь по часовой стрелке, пересаживался на другое сиденье. Число сидений карусели, мимо которых мальчик проходит при пересаживании, включая и то, на которое он садится, назовём длиной перехода. При каких <i>n</i> за <i>n</i> сеансов мальчик мог побывать на каждом сиденье, если длины всех <i>n</i> – 1 переходов различны и меньше <i>n</i>?
Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?
Дана последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, в которой <i>a</i><sub>1</sub> не делится на 5 и для всякого <i>n</i> <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> + b<sub>n</sub></i>, где <i>b<sub>n</sub></i> – последняя цифра числа <i>a<sub>n</sub></i>. Докажите, что последовательность содержит бесконечно много степеней двойки.
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)