Олимпиадные задачи по теме «Модуль числа» - сложность 2 с решениями
Модуль числа
НазадПо кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём <i>ace</i> ≠ 0. Известно, что значения выражений |<i>ax + b</i>| + |<i>cx + d</i>| и |<i>ex + f</i> | равны при всех значениях <i>x</i>.
Докажите, что <i>ad = bc</i>.
Доказать, что выражение <center><i>
<img src="/storage/problem-media/108970/problem_108970_img_2.gif">+<img src="/storage/problem-media/108970/problem_108970_img_3.gif">
</i></center> равно 2, если<i> 1<= a <= 2 </i>, и равно<i> 2<img src="/storage/problem-media/108970/problem_108970_img_4.gif"> </i>, если<i> a>2 </i>.
Докажите, что если для чисел<i>a</i>,<i>b</i>и<i>c</i>выполняются неравенства|<i>a</i>-<i>b</i>|$\ge$|<i>c</i>|,|<i>b</i>-<i>c</i>|$\ge$|<i>a</i>|,|<i>c</i>-<i>a</i>|$\ge$|<i>b</i>|, то одно из этих чисел равно сумме двух других.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.
{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт 1 – |1 – 2<i>x</i>|.
а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.
Докажите, что если <i>a + b + c + d</i> > 0, <i>a > c</i>, <i>b > d</i>, то |<i>a + b</i>| > |<i>c + d</i>|.
Докажите, что ни для каких чисел <i>x, y, t</i> не могут одновременно выполняться три неравенства: |<i>x| < |y − t|, |y| < |t − x|, |t| < |x − y</i>|.
По заданной последовательности положительных чисел <i>q</i><sub>1</sub>,..., <i>q<sub>n</sub></i>, ... строится последовательность многочленов следующим образом:
<i>f</i><sub>0</sub>(<i>x</i>) = 1,
<i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i>,
...
<i>f</i><sub><i>n</i>+1</sub>(<i>x</i>) = (1 + <i>q<sub>n</sub></i>)<i>xf<sub>n</sub></i>(<i>x</i>) – <i>q<sub>n</sub>f</i><sub><i>n</i>–1</sub>(<i>x</i>).
Докажите, что все вещественные корни <i>n</i>-го мног...
Все коэффициенты многочлена равны 1, 0 или –1. Докажите, что все его действительные корни (если они существуют) заключены в отрезке [–2, 2].
<i>X</i> – число, большее 2. Некто пишет на карточках числа: 1, <i>X, X</i>², <i>X</i>³, <i>X</i><sup>4</sup>, ..., <i>X<sup>k</sup></i> (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Докажите, что<div align="CENTER"> $\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1, </div>если |<i>x</i>| < 1 и |<i>y</i>| < 1.
Решить уравнение: <img width="134" height="53" align="MIDDLE" border="0" src="/storage/problem-media/77908/problem_77908_img_2.gif"> + <img width="134" height="53" align="MIDDLE" border="0" src="/storage/problem-media/77908/problem_77908_img_3.gif"> = 1.
Сколько различных целочисленных решений имеет неравенство |<i>x| + |y</i>| < 100?
Решить уравнение:<div align="CENTER"> | <i>x</i> + 1| - | <i>x</i>| + 3| <i>x</i> - 1| - 2| <i>x</i> - 2| = <i>x</i> + 2. </div>
Петя и Вася играют на отрезке $[0; 1]$, в котором отмечены точки $0$ и $1$. Игроки ходят по очереди, начинает Петя. Каждый ход игрок отмечает ранее не отмеченную точку отрезка. Если после хода очередного игрока нашлись три последовательных отрезка между соседними отмеченными точками, из которых можно сложить треугольник, то сделавший такой ход игрок объявляется победителем, и игра заканчивается. Получится ли у Пети гарантированно победить?
Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.
Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
Докажите, что система неравенств |x|<|y-z|, |y|<|z-x|, |z|<|x-y| не имеет решений.
Найдите максимальное значение выражения |...||<i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>| – <i>x</i><sub>3</sub>| – ... – <i>x</i><sub>1990</sub>|, где <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>1990</sub> – различные натуральные числа от 1 до 1990.
По окружности стоит 6 чисел; каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел равна 1.a) Найдите набор чисел, удовлетворяющий данному условию.б) Сколько различных таких наборов существует? Решения, получающиеся друг из друга поворотом окружности, считаются одинаковыми.