Олимпиадные задачи по теме «Многочлены» для 11 класса - сложность 3 с решениями

Даны многочлен <i>P</i>(<i>x</i>) и такие числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>,  что  <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0.  Оказалось, что  <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3&lt...

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Существуют ли такие значения <i>a</i> и <i>b</i>, при которых уравнение   <i>х</i><sup>4</sup> – 4<i>х</i><sup>3</sup> + 6<i>х</i>² + <i>aх + b</i> = 0  имеет четыре различных действительных корня?

Обозначим через [<i>n</i>]! произведение 1·11·111·...·11...11 – всего <i>n</i> сомножителей, в последнем – <i>n</i> единиц.

Докажите, что  [<i>n</i> + <i>m</i>]!  делится на произведение [<i>n</i>]!·[<i>m</i>]!.

Сравните числа   <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">

Целые числа <i>m</i> и <i>n</i> таковы, что сумма   <img align="absmiddle" src="/storage/problem-media/116373/problem_116373_img_2.gif">   целая. Верно ли, что оба слагаемых целые?

Найдите наименьшее значение  <i>x</i>² + <i>y</i>²,  если  <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.

Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы

     <i>y = x<sup>n</sup> + px + q,  z = y<sup>n</sup> + py + q,  x = z<sup>n</sup> + pz + q</i>,

то выполнено неравенство  <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.

Рассмотрите случаи   а)  <i>n</i> = 2;   б)  <i>n</i> = 2010.

Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен  (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup>  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.

Назовём тройку натуральных чисел  (<i>a, b, c</i>)  <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка  (<i>c, b, a</i>)  новой тройкой не считается.)

Числа <i>a, b, c</i> таковы, что уравнение  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0  имеет три действительных корня. Докажите, что если  –2 ≤ <i>a + b + c</i> ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

Дан многочлен  <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>.  Положим  <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.

Докажите, что  <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...

Даны положительные рациональные числа <i>a, b</i>. Один из корней трёхчлена  <i>x</i>² – <i>ax + b</i>  – рациональное число, в несократимой записи имеющее вид  <sup><i>m</i></sup>/<sub><i>n</i></sub>.  Докажите, что знаменатель хотя бы одного из чисел <i>a</i> и <i>b</i> (в несократимой записи) не меньше <i>n</i><sup>2/3</sup>.

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при <i>x</i>², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при <i>x</i>, то получатся трёхчлены, имеющие корни.

Квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что  <i>f</i> '(<i>x</i>)<i>g</i>'(<i>x</i>) ≥ |<i>f</i>(<i>x</i>)| + |<i>g</i>(<i>x</i>)|  при всех действительных <i>x</i>.

Докажите, что произведение <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>) равно квадрату некоторого трёхчлена.

Найдите все такие натуральные  (<i>a, b</i>),  что <i>a</i><sup>2</sup> делится на натуральное число  2<i>ab</i><sup>2</sup> – <i>b</i><sup>3</sup> + 1.

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> > 1  с целыми коэффициентами, <i>k</i> – произвольное натуральное число. Рассмотрим многочлен

<i>Q<sub>k</sub></i>(<i>x</i>) = <i>P</i>(<i>P</i>(...<i>P</i>(<i>P</i>(<i>x</i>))...))  (<i>P</i> применён <i>k</i> раз). Докажите, что существует не более <i>n</i> целых чисел <i>t</i>, при которых  <i>Q<sub>k</sub></i>(<i>t</i>) = <i>t</i>.

Найдите все такие пары  (<i>x, y</i>)  целых чисел, что  1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².

Произведение квадратных трёхчленов  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a<sub>n</sub>x + b<sub>n</sub></i>  равно многочлену  <i>P</i>(<i>x</i>) = <i>x</i><sup>2<i>n</i></sup> + <i>c</i><sub>1</sub><i>x</i><sup>2<i>n</i>–1</sup> + <i>c</i><sub>2</sub><i>x</i><sup>2<i>n</i>–2</sup> + ... + <i>c</i><sub>2<i>n</i>–1</...

Докажите, что для любого многочлена <i>P</i> с целыми коэффициентами и любого натурального <i>k</i> существует такое натуральное <i>n</i>, что  <i>P</i>(1) + <i>P</i>(2) + ... + <i>P</i>(<i>n</i>)  делится на <i>k</i>.

Уравнение  <i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i> = 0  с целыми ненулевыми коэффициентами имеет <i>n</i> различных целых корней.

Докажите, что если каждые два корня взаимно просты, то и числа <i>a</i><sub><i>n</i>–1</sub> и <i>a<sub>n</sub></i> взаимно просты.

Пусть многочлен  <i>P</i>(<i>x</i>) = <i>a<sub>n</sub>x<sup>n</sup> + a</i><sub><i>n</i>–1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub>0</sub>  имеет хотя бы один действительный корень и  <i>a</i><sub>0</sub> ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи <i>P</i>(<i>x</i>), можно получить из него число <i>a</i><sub>0</sub> так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Квадратные трёхчлены  <i>P</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>cx + d</i>  таковы, что уравнение  <i>P</i>(<i>Q</i>(<i>x</i>)) = <i>Q</i>(<i>P</i>(<i>x</i>))  не имеет действительных корней.

Докажите, что  <i>b ≠ d </i>.

Докажите, что можно выбрать такие различные действительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>,  что уравнение

(<i>x – a</i><sub>1</sub>)(<i>x – a</i><sub>2</sub>)...(<i>x – a</i><sub>10</sub>) = (<i>x + a</i><sub>1</sub>)(<i>x + a</i><sub>2</sub>)...(<i>x + a</i><sub>10</sub>)  будет иметь ровно пять различных действительных корней.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка