Олимпиадные задачи по теме «Многочлены» для 10 класса - сложность 3 с решениями
Многочлены
НазадНайдите все такие натуральные <i>k</i>, что при каждом нечётном <i>n</i> > 100 число 20<sup><i>n</i></sup> + 13<sup><i>n</i></sup> делится на <i>k</i>.
Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>) получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>) получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен <i>P</i>(<i&g...
Даны многочлен <i>P</i>(<i>x</i>) и такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0. Оказалось, что <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3<...
Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif"> Докажите, что <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.
Положительные действительные числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> и <i>k</i> таковы, что <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>, <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .
Докажите, что какие-то два из чисел <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> отличаются больше чем на 1.
Назовем приведённый квадратный трёхчлен с целыми коэффициентами <i>сносным</i>, если его корни – целые числа, а коэффициенты не превосходят по модулю 2013. Вася сложил все сносные квадратные трёхчлены. Докажите, что у него получился трёхчлен, не имеющий действительных корней.
Для натуральных чисел <i>a</i> > <i>b</i> > 1 определим последовательность <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... формулой <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> . Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.
У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>) имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?
Существуют ли такие значения <i>a</i> и <i>b</i>, при которых уравнение <i>х</i><sup>4</sup> – 4<i>х</i><sup>3</sup> + 6<i>х</i>² + <i>aх + b</i> = 0 имеет четыре различных действительных корня?
Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число <i>am</i>² + <i>bn</i>² является точным квадратом. Докажите, что <i>ab</i> = 0.
Обозначим через [<i>n</i>]! произведение 1·11·111·...·11...11 – всего <i>n</i> сомножителей, в последнем – <i>n</i> единиц.
Докажите, что [<i>n</i> + <i>m</i>]! делится на произведение [<i>n</i>]!·[<i>m</i>]!.
Сравните числа <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">
Целые числа <i>m</i> и <i>n</i> таковы, что сумма <img align="absmiddle" src="/storage/problem-media/116373/problem_116373_img_2.gif"> целая. Верно ли, что оба слагаемых целые?
Для различных положительных чисел <i>а</i> и <i>b</i> выполняется равенство <img align="absmiddle" src="/storage/problem-media/116018/problem_116018_img_2.png">. Докажите, что <i>а</i> и <i>b</i> – взаимно обратные числа.
Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>) делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>) для любого целого <i>n</i>?
Найдите наименьшее значение <i>x</i>² + <i>y</i>², если <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.
Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы
<i>y = x<sup>n</sup> + px + q, z = y<sup>n</sup> + py + q, x = z<sup>n</sup> + pz + q</i>,
то выполнено неравенство <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.
Рассмотрите случаи а) <i>n</i> = 2; б) <i>n</i> = 2010.
Числа <i>a, b</i> и <i>c</i> таковы, что (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>, (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³. Докажите, что <i>abc</i> = 0.
Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup> после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.
Вася отвечает теорему Виета: "Сумма трёх коэффициентов квадратного трёхчлена равна одному из его корней, а произведение – другому".
Экзаменатор: "Неверно".
Вася: "Как же неверно? Я проверил для случайно выбранного трёхчлена, и всё получилось".
Какой это мог быть трёхчлен, если его коэффициенты – целые числа?
Для каждого натурального <i>n</i> обозначим через <i>S<sub>n</sub></i> сумму первых <i>n</i> простых чисел: <i>S</i><sub>1</sub> = 2, <i>S</i><sub>2</sub> = 2 + 3 = 5, <i>S</i><sub>3</sub> = 2 + 3 + 5 = 10, ... .
Могут ли два подряд идущих члена последовательности (<i>S<sub>n</sub></i>) оказаться квадратами натуральных чисел?
Назовём тройку натуральных чисел (<i>a, b, c</i>) <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка (<i>c, b, a</i>) новой тройкой не считается.)
Числа <i>a, b, c</i> таковы, что уравнение <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0 имеет три действительных корня. Докажите, что если –2 ≤ <i>a + b + c</i> ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений <i>x</i>² – <i>ax + b</i> = 0 и <i>x</i>² – <i>bx + a</i> = 0 имеет два целых корня?
Приведённые квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что уравнения <i>f</i>(<i>g</i>(<i>x</i>)) = 0 и <i>g</i>(<i>f</i>(<i>x</i>)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений <i>f</i>(<i>f</i>(<i>x</i>)) = 0 и <i>g</i>(<i>g</i>(<i>x</i>)) = 0 тоже не имеет вещественных корней.