Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» для 3-8 класса - сложность 2-3 с решениями

Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством:  7<i>p</i> + 1  делится на <i>q</i>, а  7<i>q</i> + 1  делится на <i>p</i>.

Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

Решите уравнение:  <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.

Докажите, что если  <i>а</i> > 0,  <i>b</i> > 0,  <i>c</i> > 0  и  <i>аb + bc + ca</i> ≥ 12,  то  <i>a + b + c</i> ≥ 6.

Какое из чисел больше:  1 – 2 + 3 – 4 + 5 – ... + 99 – 100  или  1 + 2 – 3 + 4 – 5 + 6 – ... – 99 + 100?

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.

Числа <i>a</i> и <i>b</i> таковы, что   <i>a</i>³ – <i>b</i>³ = 2,  <i>a</i><sup>5</sup> – <i>b</i><sup>5</sup> ≥ 4.   Докажите, что  <i>a</i>² + <i>b</i>² ≥ 2.

Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число  <i>am</i>² + <i>bn</i>²  является точным квадратом. Докажите, что  <i>ab</i> = 0.

На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Даны положительные числа <i>x</i>, <i>y</i>, <i>z</i>. Докажите неравенство   <img align="middle" src="/storage/problem-media/116543/problem_116543_img_2.gif">

Известно, что  0 < <i>a, b, c, d</i> < 1  и  <i>abcd</i> = (1 – <i>a</i>)(1 – <i>b</i>)(1 – <i>c</i>)(1 – <i>d</i>).  Докажите, что   (<i>a + b + c + d</i>) – (<i>a + c</i>)(<i>b + d</i>) ≥ 1.

Натуральные числа  <i>a < b < c</i>  таковы, что  <i>b + a</i>  делится на  <i>b – a</i>,  а  <i>c + b</i>  делится на  <i>c – b</i>.  Число <i>a</i> записывается 2011, а число <i>b</i> – 2012 цифрами. Сколько цифр в числе <i>c</i>?

Что больше:  2011<sup>2011</sup> + 2009<sup>2009</sup>  или  2011<sup>2009</sup> + 2009<sup>2011</sup>?

Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?

Внутри стороны <i>BC</i> правильного треугольника <i>ABC</i> взята точка <i>D</i>. Прямая, проходящая через точку <i>C</i> и параллельная <i>AD</i>, пересекает прямую <i>AB</i> в точке <i>E</i>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/115920/problem_115920_img_2.gif">

Дан четырёхугольник <i>ABCD</i>. Оказалось, что описанная окружность треугольника <i>ABC</i>, касается стороны <i>CD</i>, а описанная окружность треугольника <i>ACD</i> касается стороны <i>AB</i>. Докажите, что диагональ <i>AC</i> меньше, чем расстояние между серединами сторон <i>AB</i> и <i>CD</i>.

Пусть <i>a, b, c</i> – длины сторон произвольного треугольника; <i>p</i> – полупериметр; <i>r</i> – радиус вписанной окружности. Докажите неравенство <div align="center"><img src="/storage/problem-media/115857/problem_115857_img_2.gif"></div>

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Окружность вписана в равнобедренную трапецию <i>ABCD</i> с основаниями  <i>BC = a</i>  и  <i>AD = b</i>.  Точка <i>H</i> – проекция вершины <i>B</i> на <i>AD</i>, точка <i>P</i> – проекция точки <i>H</i> на <i>AB</i>, точка <i>F</i> лежит на отрезке <i>BH</i>, причём  <i>FH = AH</i>.  Найдите <i>AB, BH, BP, DF</i> и расположите найденные величины по возрастанию.

Точка <i>M</i> лежит вне окружности с центром <i>O</i>. Прямая <i>OM</i> пересекает окружность в точках <i>A</i> и <i>B</i>, прямая, проходящая через точку <i>M</i>, касается окружности в точке <i>C</i>, точка <i>H</i> – проекция точки <i>C</i> на <i>AB</i>, а перпендикуляр к <i>AB</i>, восставленный в точке <i>O</i>, пересекает окружность в точке <i>P</i>. Известно, что  <i>MA = a</i>  и  <i>MB = b</i>.  Найдите <i>MO, MC, MH, MP</i> и расположите найденные значения по возрастанию.

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

Числа <i>a, b</i> и <i>c</i> таковы, что  (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>,  (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³.  Докажите, что  <i>abc</i> = 0.

Дано натуральное  <i>n</i> > 1.  Число  <i>a > n</i>²  таково, что среди чисел  <i>a</i> + 1, <i>a</i> + 2, ..., <i>a + n</i>  есть кратные каждого из чисел  <i>n</i>² + 1, <i>n</i>² + 2, ..., <i>n</i>² + <i>n</i>.

Докажите, что  <i>a > n</i><sup>4</sup> – <i>n</i>³.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка