Олимпиадные задачи по математике для 11 класса

B треугольнике <i>ABC</i> угол <i>A</i> равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно  <i>AB + AC</i>.

В остроугольном треугольнике проведены высоты <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной <i>BC</i> на прямую <i>AC</i>, проходит через центр вписанной окружности треугольника <i>A</i><sub>1</sub><i>CB</i><sub>1</sub>.

Две окружности с радиусами 1 и 2 имеют общий центр в точке <i>O</i>. Вершина <i>A</i> правильного треугольника <i>ABC</i> лежит на большей окружности, а середина стороны <i>BC</i> – на меньшей. Чему может быть равен угол <i>BOC</i>?

Из вершины <i>B</i> треугольника <i>ABC</i> опущен перпендикуляр <i>BM</i> на биссектрису угла <i>C</i>. Пусть <i>K</i> – точка касания вписанной окружности со стороной <i>BC</i>.

Найдите угол <i>MKB</i>, если известно, что  ∠<i>BAC</i> = α.

Дан треугольник <i>ABC</i>. Из вершин <i>B</i> и <i>C</i> опущены перпендикуляры <i>BM</i> и <i>CN</i> на биссектрисы углов <i>C</i> и <i>B</i> соответственно.

Докажите, что прямая <i>MN</i> пересекает стороны <i>AC</i> и <i>AB</i> в точках их касания с вписанной окружностью.

Верно ли, что при любом <i>n</i> правильный 2<i>n</i>-угольник является проекцией некоторого многогранника, имеющего не более, чем  <i>n</i> + 2  грани?

Дан треугольник <i>ABC</i> площади 1. Из вершины <i>B</i> опущен перпендикуляр <i>BM</i> на биссектрису угла <i>C</i>. Найдите площадь треугольника <i>AMC</i>.

В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?

На сторонах угла взяты точки <i>A, B</i>. Через середину <i>M</i> отрезка <i>AB</i> проведены две прямые, одна из которых пересекает стороны угла в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, другая – в точках <i>A</i><sub>2</sub> , <i>B</i><sub>2</sub>. Прямые <i>A</i><sub>1</sub><i>B</i><sub>2</sub> и <i>A</i><sub>2</sub><i>B</i><sub>1</sub> пересекают <i>AB</i> в точках <i>P</i> и <i>Q</i>. Докажите, что <i>M</i> – середина <i>PQ</i>.

Дана окружность и точка <i>К</i> внутри неё. Произвольная окружность, равная данной и проходящая через точку <i>К</i>, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Дана окружность, точка<i> A </i>на ней и точка<i> M </i>внутри нее. Рассматриваются хорды<i> BC </i>, проходящие через<i> M </i>. Докажите, что окружности, проходящие через середины сторон всех треугольников<i> ABC </i>, касаются некоторой фиксированной окружности.

Даны две концентрические окружности. Каждая из окружностей<i> b<sub>1</sub> </i>и<i> b<sub>2</sub> </i>касается внешним образом одной окружности и внутренним – другой, а каждая из окружностей<i> c<sub>1</sub> </i>и<i> c<sub>2</sub> </i>касается внутренним образом обеих окружностей. Докажите, что8точек, в которых окружности<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>пересекают<i> c<sub>1</sub> </i>,<i> c<sub>2</sub> </i>, лежат на двух окружностях, отличных от<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> c<sub>1</sub> </i>,&lt...

Окружности Ω<sub>1</sub> и Ω<sub>2</sub> пересекаются в точках <i>A</i> и <i>B</i>. Через точку <i>B</i> проведена прямая, вторично пересекающая Ω<sub>1</sub> и Ω<sub>2</sub> в точках <i>K</i> и <i>M</i> соответственно. Прямая <i>l</i><sub>1</sub> касается Ω<sub>1</sub> в точке <i>Q</i> и параллельна прямой <i>AM</i>. <i>R</i> – вторая точка пересечения прямой <i>QA</i> с Ω<sub>2</sub>. Докажите, что

  а) касательная <i>l</i><sub>2</sub>, проведённая к Ω<sub>2</sub> в точке <i>R</i>, параллельна <i>AK</i>.;

  б) прямые <i...

Найдите все положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub>10</sub>, удовлетворяющие при всех  <i>k</i> = 1, 2,..., 10  условию   (<i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i>)(<i>x<sub>k</sub> + ... + x</i><sub>10</sub>) = 1.

Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)

Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.

  На плоскости даны три прямые <i>l</i><sub>1</sub>, <i>l</i><sub>2</sub>, <i>l</i><sub>3</sub>, образующие треугольник, и отмечена точка <i>O</i> – центр описанной окружности этого треугольника. Для произвольной точки <i>X</i> плоскости обозначим через <i>X<sub>i</sub></i> точку, симметричную точке <i>X</i> относительно прямой <i>l<sub>i</sub></i>,  <i>i</i> = 1, 2, 3.

  а) Докажите, что для произвольной точки <i>M</i> прямые, соединяющие середины отрезков <i>O</i><sub>1</sub><i>O</i><sub>2</sub> и <i>M</i><sub>1</sub><i>M</i>...

Трапеция <i>ABCD</i> вписана в окружность <i>w</i>  (<i>AD</i> || <i>BC</i>).  Окружности, вписанные в треугольники <i>ABC</i> и <i>ABD</i>, касаются оснований трапеции <i>BC</i> и <i>AD</i> в точках <i>P</i> и <i>Q</i> соответственно. Точки <i>X</i> и <i>Y</i> – середины дуг <i>BC</i> и <i>AD</i> окружности <i>w</i>, не содержащих точек <i>A</i> и <i>B</i> соответственно. Докажите, что прямые <i>XP</i> и <i>YQ</i> пересекаются на окружности <i>w</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка