Олимпиадные задачи по математике для 2-9 класса - сложность 2 с решениями

Марсиане делят сутки на 13 часов. После того, как <i>Марсовский Заяц</i> уронил часы в чай, у них изменилась скорость вращения секундной стрелки, а скорость вращения других стрелок осталась прежней. Известно, что каждую полночь все три стрелки совпадают. Сколько всего за сутки может быть таких моментов времени, когда три стрелки совпадут? <div align="center"><img src="/storage/problem-media/116973/problem_116973_img_2.gif"></div>

В треугольнике <i>ABC</i> проведены биссектрисы <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Известно, что центр описанной окружности треугольника <i>BB</i><sub>1</sub><i>C</i><sub>1</sub> лежит на прямой <i>AC</i>. Найдите угол <i>C</i> треугольника.

Диагонали вписанного четырехугольника <i>ABCD</i> пересекаются в точке <i>K</i>.

Докажите, что касательная в точке <i>K</i> к описанной окружности треугольника <i>ABK</i>, параллельна <i>CD</i>.

Хорды <i>AC</i> и <i>BD</i> окружности пересекаются в точке <i>P</i>. Перпендикуляры к <i>AC</i> и <i>BD</i> в точках <i>C</i> и <i>D</i>, соответственно пересекаются в точке <i> Q </i>.

Докажите, что прямые <i>AB</i> и <i>PQ</i> перпендикулярны.

Середина одной из сторон треугольника и основания высот, опущенных на две другие стороны, образуют равносторонний треугольник.

Верно ли, что исходный треугольник тоже равносторонний?

В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка?

Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.

Сколько еще раз повторится такая ситуация в этом тысячелетии?

Две окружности пересекаются в точках<i> P </i>и<i> Q </i>. Третья окружность с центром в точке<i> P </i>пересекает первую в точках<i> A </i>и<i> B </i>, а вторую – в точках<i> C </i>и<i> D </i>(см.рисунок). Докажите что углы<i> AQD </i>и<i> BQC </i>равны.

Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.

Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.

Дана окружность с диаметром <i>AB</i>. Другая окружность с центром в точке <i>A</i> пересекает отрезок <i>AB</i> в точке <i>C</i>, причём  <i>AC</i> < ½ <i>AB</i>.  Общая касательная двух окружностей касается первой окружности в точке <i>D</i>. Докажите, что прямая <i>CD</i> перпендикулярна <i>AB</i>.

Тангенсы углов треугольника – целые числа. Чему они могут быть равны?

Внутри угла с вершиной <i>M</i> отмечена точка <i>A</i>. Из этой точки выпустили шар, который отразился от одной стороны угла в точке <i>B</i>, затем от другой стороны в точке <i>C</i> и вернулся в <i>A</i> ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр <i>O</i> описанной окружности треугольника <i>BCM</i> лежит на прямой <i>AM</i>. (Шар считайте точкой.) <img src="/storage/problem-media/105104/problem_105104_img_2.png" width="200">

Четырёхугольник <i>ABCD</i> вписан в окружность, центр <i>O</i> которой лежит внутри него.

Доказать, что, если  ∠<i>BAO</i> = ∠<i>DAC</i>,  то диагонали четырёхугольника перпендикулярны.

Можно ли разрезать какой-нибудь треугольник на четыре выпуклые фигуры: треугольник, четырёхугольник, пятиугольник и шестиугольник?

Высоты <i>AA'</i> и <i>BB'</i> треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точки <i>X</i> и <i>Y</i> – середины отрезков <i>AB</i> и <i>CH</i> соответственно.

Доказать, что прямые <i>XY</i> и <i>A'B'</i> перпендикулярны.

Даны окружность $\omega$ с центром $O$ и точка $P$ внутри нее. Пусть $X$ – произвольная точка $\omega$, прямая $XP$ и окружность $XOP$ пересекают $\omega$ во второй раз в точках $X_1$, $X_2$ соответственно. Докажите, что все прямые $X_1X_2$ параллельны друг другу.

Точка $D$ лежит на основании $AB$ равнобедренного тупоугольного треугольника $ABC$ так, что отрезок $AD$ равен радиусу описанной окружности треугольника $BCD$. Найдите угол $ACD$.

Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.

Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.

В ряд записаны  $n > 2$  различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?

Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

Цифры от 0 до 9 зашифрованы буквами A, B, C, D, E, F, G, H, I, J в каком-то порядке. За один вопрос можно узнать зашифрованную запись суммы нескольких различных букв. Например, если спросить «А + B = ?», то в случае, когда A = 9, B = 1, C = 0, ответом будет «А + В = BC». Как можно за пять таких вопросов определить, какие буквы каким цифрам соответствуют?

Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.

Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов. Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?

Пусть $I$ – центр вписанной окружности неравнобедренного треугольника $ABC$. Докажите, что существует единственная пара точек $M$, $N$, лежащих соответственно на сторонах $AC$, $BC$, такая, что $\angle AIM = \angle BIN$ и $MN \parallel AB$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка