Олимпиадные задачи по математике для 7 класса - сложность 2 с решениями

Можно ли в записи  2013² – 2012² – ... – 2² – 1²  некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?

Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?

Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

На стороне <i>ВС</i> равностороннего треугольника <i>АВС</i> отмечены точки <i>K</i> и <i>L</i> так, что  <i>BK = KL = LC</i>,  а на стороне <i>АС</i> отмечена точка <i>М</i> так,

что  <i>АМ</i> = &frac13; <i>AC</i>.  Найдите сумму углов <i>AKM</i> и <i>ALM</i>.

Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство:  <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>).   Следует ли из этого, что  <i>а = b = c</i>?

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

В прямоугольнике <i>АВСD</i> точка <i>Р</i> – середина стороны <i>АВ</i>, а точка <i>Q</i> – основание перпендикуляра, опушенного из вершины <i>С</i> на <i>PD</i>.

Докажите, что  <i>BQ = BC</i>.

Является ли простым число  2011·2111 + 2500?

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

Через точку <i>Y</i> на стороне <i>AB</i> равностороннего треугольника <i>ABC</i> проведена прямая, пересекающая сторону <i>BC</i> в точке <i>Z</i>, а продолжение стороны <i>CA</i> за точку <i>A</i> – в точке <i>X</i>. Известно, что  <i>XY = YZ</i>  и  <i>AY = BZ</i>.  Докажите, что прямые <i>XZ</i> и <i>BC</i> перпендикулярны.

Назовём натуральные числа <i>a</i> и <i>b</i> <i>друзьями</i>, если их произведение является точным квадратом. Докажите, что если <i>a</i> – друг <i>b</i>, то <i>a</i> – друг НОД(<i>a, b</i>).

Четверо детей сказали друг о друге так.

<i>Маша</i>:  Задачу решили трое: Саша, Наташа и Гриша.

<i>Саша</i>:  Задачу не решили трое: Маша, Наташа и Гриша.

<i>Наташа</i>:  Маша и Саша солгали.

<i>Гриша</i>:  Маша, Саша и Наташа сказали правду.

Сколько детей на самом деле сказали правду?

На карте обозначены четыре деревни: <i>A, B, C</i> и <i>D</i>, соединённые тропинками (см. рисунок). <div align="center"><img src="/storage/problem-media/116664/problem_116664_img_2.gif"></div>В справочнике указано, что на маршрутах<i>A-B-C</i>и<i>B-C-D</i>есть по 10 колдобин, на маршруте<i>A-B-D</i>колдобин 22, а на маршруте<i>A-D-B</i>колдобин 45. Туристы хотят добраться из<i>A</i>в<i>D</i>так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?

Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.

Какова могла быть длина верёвочки, если известно, что какие-то два из полученных кусков имели длины 9 метров и 4 метра?

Медиана треугольника в полтора раза больше стороны, к которой она проведена. Найдите угол между двумя другими медианами.

Разрежьте фигуру на рис. на 8 одинаковых частей. <i> <img align="center" src="/storage/problem-media/111894/problem_111894_img_2.gif"> </i>

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

На базаре продаются рыбки, большие и маленькие. Сегодня три больших и одна маленькая стоят вместе столько же, сколько пять больших вчера. А две большие и одна маленькая сегодня стоят вместе столько же, сколько три больших и одна маленькая вчера. Можно ли по этим данным выяснить, что дороже: одна большая и две маленьких сегодня, или пять маленьких вчера?

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных?

По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)

Натуральные числа <i>a, b, c, d</i> таковы, что  <i>ab = cd</i>.  Докажите, что найдутся такие натуральные <i>u, v, w, z</i>, что  <i>a = uv,  b = wz,  c = uw,  d = vz</i>.

У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка