Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 8 класса - сложность 4 с решениями
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку <i>красивой</i>, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?
Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>, равный треугольнику <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и такой, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub> и <i>CC</i><sub>2</sub> будут параллельны?
По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?
В треугольнике<i> ABC </i>угол<i> A </i>равен60<i><sup>o</sup> </i>. Пусть<i> BB<sub>1</sub> </i>и<i> CC<sub>1</sub> </i> — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой<i> B<sub>1</sub>C<sub>1</sub> </i>, лежит на стороне<i> BC </i>.
Последовательности(<i>a<sub>n</sub></i>)и(<i>b<sub>n</sub></i>)заданы условиями<i> a<sub>1</sub>=</i>1,<i> b<sub>1</sub>=</i>2,<i> a<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_2.gif"> </i>и<i> b<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_3.gif"> </i>. Докажите, что<i> a</i>2008<i><</i>5.
Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде <i>x = a<sup>p</sup> + b<sup>p</sup></i> (с натуральными <i>a, b</i>) при всех <i>p</i> ∈ <i>P </i> и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Какое минимальное количество клеток можно закрасить черным в белом квадрате 300×300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?
Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
а) В 99 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов. б) В 100 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.
Найдите все такие пары (<i>x, y</i>) натуральных чисел, что <i>x + y = a<sup>n</sup>, x</i>² + <i>y</i>² = <i>a<sup>m</sup></i> для некоторых натуральных <i>a, n, m</i>.
Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на <i>N</i> + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.
В клетчатом прямоугольнике 49×69 отмечены все50<i>· </i>70вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?
За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны. Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.
На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
Натуральные числа <i>x</i> и <i>y</i> таковы, что 2<i>x</i>² – 1 = <i>y</i><sup>15</sup>. Докажите, что если <i>x</i> > 1, то <i>x</i> делится на 5.