Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 11 класса - сложность 4-5 с решениями

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.

На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(<i>n</i> – 1)  углов (то есть точек пересечения пары парабол).

Изначально на доске были написаны одночленs  1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>.  Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены  <i>S</i><sub>1</sub> = 1 + <i>x,  S</i><sub>2</sub> = 1 + <i>x + x</i>²,  <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>,  ...,  <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>.  Докажите...

Дан неравнобедренный треугольник <i>ABC</i>. Пусть <i>N</i> – середина дуги <i>BAC</i> его описанной окружности, а <i>M</i> – середина стороны <i>BC</i>. Обозначим через <i>I</i><sub>1</sub> и <i>I</i><sub>2</sub> центры вписанных окружностей треугольников <i>ABM</i> и <i>ACM</i> соответственно. Докажите, что точки <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>A</i>, <i>N</i> лежат на одной окружности.

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Окружность с центром <i> I </i>касается сторон <i> AB </i>,<i> BC </i>,<i> AC </i>неравнобедренного треугольника <i> ABC </i>в точках<i> C<sub>1</sub> </i>,<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>соответственно. Окружности <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>вписаны в четырехугольники <i> BA<sub>1</sub>IC<sub>1</sub> </i>и <i> CA<sub>1</sub>IB<sub>1</sub> </i>соответственно. Докажите, что общая внутренняя касательная к <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>, отличная от ...

  В королевстве <i>N</i> городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются <i>соседними</i>). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.

  Однажды Король провел такую реформу: каждый из <i>N</i> мэров городов стал снова мэром одного из <i>N</i> городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара сос...

На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.

Последовательность<i> a<sub>1</sub>,a<sub>2</sub>,.. </i>такова, что<i> a<sub>1</sub><img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_2.gif"></i>(1<i>,</i>2)и<i> a<sub>k+</sub></i>1<i>=a<sub>k</sub>+<img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_3.gif"> </i>при любом натуральном <i> k </i>. Докажите, что в ней не может существовать более одной пары членов с целой суммой.

В нашем распоряжении имеются 3<sup>2<i>k</i></sup>неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3<i>k + </i>1 взвешиваний?

В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее <i>x</i> часов  (<i>x</i> > 4).  Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от <i>x</i>)?

В блицтурнире принимали участие  2<i>n</i> + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее <i>n</i> игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

Дан выпуклый четырёхугольник<i> ABCD </i>. Пусть<i> P </i>и<i> Q </i>– точки пересечения лучей<i> BA </i>и<i> CD </i>,<i> BC </i>и<i> AD </i>соответственно, а<i> H </i>– проекция<i> D </i>на<i> PQ </i>. Докажите, что четырёхугольник<i> ABCD </i>является описанным тогда и только тогда, когда вписанные окружности треугольников<i> ADP </i>и<i> CDQ </i>видны из точки<i> H </i>под равными углами.

Фокусник отгадывает площадь выпуклого 2008-угольника<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>2008</sub>, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

Каждую грань тетраэдра можно поместить в круг радиуса1. Докажите, что весь тетраэдр можно поместить в шар радиуса<i> <img src="/storage/problem-media/111864/problem_111864_img_2.gif"> </i>.

Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде  <i>x = a<sup>p</sup> + b<sup>p</sup></i>  (с натуральными <i>a, b</i>) при всех   <i>p</i> ∈ <i>P </i>  и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.

У выпуклого многогранника одна вершина <i>A</i> имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета <i>хорошей</i>, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из <i> A </i>, покрашены в один цвет.

Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из <i>N</i> цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем <i>N</i> фокусник может договориться с помощником так, чтобы фокус гарантированно удался?

В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i>  (2 ≤ <i>k ≤ N</i>)  при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить  2<i>k</i> – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары. Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?

Существуют ли такие ненулевые числа <i>a, b, c</i>, что при любом  <i>n</i> > 3  можно найти многочлен вида  <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>,  имеющий ровно <i>n</i> (не обязательно различных) целых корней?

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка