Олимпиадные задачи из источника «15 турнир (1993/1994 год)» - сложность 3-4 с решениями

Из точки <i>O</i>, лежащей внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, проведены отрезки ко всем вершинам: <i>OA</i><sub>1</sub>, <i>OA</i><sub>2</sub>, ..., <i> OA<sub>n</sub> </i>. Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами <i>n</i>-угольника – острые, причём  ∠<i>OA</i><sub>1</sub><i>A<sub>n</sub></i> ≤ ∠<i>OA</i><sub>1</sub><i>A</i><sub>2</sub>,  ∠<i>OA</i><sub>2</sub><i>A</i><sub>1&...

Внутри квадрата <i>ABCD</i> лежит квадрат <i>PQRS</i>. Отрезки <i>AP, BQ, CR</i> и <i>DS</i> не пересекают друг друга и стороны квадрата <i>PQRS</i>.

Докажите, что сумма площадей четырёхугольников <i>ABQP</i> и <i>CDSR</i> равна сумме площадей четырёхугольников <i>BCRQ</i> и <i>DAPS</i>.

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>,  <i>n</i> > 1,  положительны?

В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что

  а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;

  б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Две окружности пересекаются в точках <i>A</i> и <i>B</i>. В точке <i>A</i> к обеим проведены касательные, пересекающие окружности в точках <i>M</i> и <i>N</i>. Прямые <i>BM</i> и <i>BN</i> пересекают окружности еще раз в точках <i>P</i> и <i>Q</i> (<i>P</i> – на прямой <i>BM, Q</i> – на прямой <i>BN</i>). Докажите, что отрезки <i>MP</i> и <i>NQ</i> равны.

Рассматривается произвольный многоугольник (возможно, невыпуклый).

  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?

  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем &frac13; площади всего многоугольника.   в) Можно ли в пункте б) заменить число &frac13; на большее? (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон <i>S</i>. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом <i>S</i> за несколько операций можно добиться того, что будут гореть ровно две лампочки.

Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

Известно, что уравнение  <i>x</i><sup>4</sup> + <i>ax</i>³ + 2<i>x</i>² + <i>bx</i> + 1 = 0  имеет действительный корень. Докажите неравенство  <i>a</i>² + <i>b</i>² ≥ 8.

В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.)

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.

Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.

(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:

  а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;

  б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.

Через <i>S</i>(<i>n</i>) обозначим сумму цифр числа <i>n</i> (в десятичной записи).

Существуют ли три таких различных натуральных числа <i>m, n</i> и <i>p</i>, что   <i>m + S</i>(<i>m</i>) = <i>n+S</i>(<i>n</i>) = <i>p + S</i>(<i>p</i>)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка