Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 7-11 класса - сложность 1 с решениями

Известно, что  tg <i>A</i> + tg <i>B</i> = 2  и  ctg <i>A</i> + ctg <i>B</i> = 3.  Найдите  tg (<i>A + B</i>).

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Сравните числа:  <i>А</i> = 2011·20122012·201320132013  и  <i>В</i> = 2013·20112011·201220122012.

Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>

Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?

В записи   ¼  ¼  ¼  ¼   расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Про углы треугольника <i>ABC</i> известно, что   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_3.gif"> .   Найдите величину угла <i>C</i>.

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками

равно 1). Чему равен дискриминант этого трёхчлена? <div align="center"><img src="/storage/problem-media/116482/problem_116482_img_2.gif"></div>

После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.

  – Тигры были?

  – Да, причём их было в семь раз больше, чем не тигров.

  – А обезьяны?

  – Да, их было в семь раз меньше, чем не обезьян.

  – А львы были?

Ответьте за Казимира Алмазова.

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

Вычислите:   <img align="absmiddle" src="/storage/problem-media/116475/problem_116475_img_2.gif">

Однажды Миша, Витя и Коля заметили, что принесли в детский сад одинаковые игрушечные машинки. У Миши есть машинка с прицепом, есть маленькая машинка и есть зеленая машинка без прицепа. У Вити есть машинка без прицепа и маленькая зеленая с прицепом, а у Коли — большая машинка и маленькая синяя с прицепом. Машинку какого вида (по цвету, размеру и наличию прицепа) принесли мальчики в детский сад? Ответ объясните.

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем16клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.

<center><i> <img align="absmiddle" src="/storage/problem-media/115487/problem_115487_img_2.gif"> </i></center>

Электронные часы показывают часы и минуты (например,16<i>:</i>15). Тренируясь в счете, Буратино находит сумму цифр на этих часах (1<i> + </i>6<i> + </i>1<i> + </i>5<i> = </i>13). Запишите такое время суток, когда сумма цифр на часах будет наибольшей.

В тюрьме Кощея пять камер, пронумерованных числами от1до5. В каждой камере сидит по одному узнику. Василиса уговорила Кощея провести эксперимент: на стене каждой камеры она один раз напишет какой-нибудь номер и в полночь каждый узник перейдёт в камеру с указанным номером (если номер на стене совпадает с номером камеры, то узник никуда не переходит). В следующую полночь узники опять должны перейти из камеры в камеру согласно указаниям на стене, и так они действуют в течение пяти ночей. Если расположение узников в камерах в течение всех шести дней (включая первый) ни разу не повторится, то Василисе дадут звание Премудрой, а узников отпустят. Помогите Василисе написать номера в камерах.

Два десятка лимонов стоят столько же рублей, сколько дают лимонов на 500 рублей. Сколько стоит десяток лимонов?

Во время игры в шахматы у Ёжика в какой-то момент оказалось на доске в два раза меньше фигур, чем у Медвежонка, при этом их было в пять раз меньше чем свободных клеток на доске. Сколько фигур Медвежонка было съедено к этому моменту?

Разрежьте данную фигуру (см. рисунок) на три равных фигуры. <center><i> <img align="absmiddle" src="/storage/problem-media/115474/problem_115474_img_2.gif"> </i></center>

Карлсону подарили пакет с конфетами: шоколадными и карамельками. За первые 10 минут Карлсон съел 20% всех конфет, причем 25% из них составляли карамельки. После этого Карлсон съел еще три шоколадные конфеты, и доля карамелек среди съеденных Карлсоном конфет понизилась до 20%. Сколько конфет было в подаренном Карлсону пакете?

В классе25учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

Разрежьте фигуру, изображенную на рисунке, на две равные части. <center><i> <img align="absmiddle" src="/storage/problem-media/115469/problem_115469_img_2.gif"> </i></center>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка