Олимпиадные задачи из источника «1993 год» для 10 класса
Муха летает внутри правильного тетраэдра с ребром <i>a</i>. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?
а) Известно, что область определения функции <i>f</i>(<i>x</i>) – отрезок [–1, 1] и <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i> при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал (–1, 1)? Вся числовая ось?
В ящиках лежат камни. За один ход выбирается число <i>k</i>, затем камни в ящиках делятся на группы по <i>k</i> штук и остаток менее, чем из <i>k</i> штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
а) не более 460 камней;
б) не более 461 камня?
Даны <i>n</i> точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
Известно, что<i>tg</i> $\alpha$+<i>tg</i> $\beta$=<i>p</i>,<i>ctg</i> $\alpha$+<i>ctg</i> $\beta$=<i>q</i>. Найти <i>tg</i> ($\alpha$+$\beta$).
На стороне <i>AB</i> треугольника <i>ABC</i> внешним образом построен квадрат с центром <i>O</i>. Точки <i>M</i> и <i>N</i> середины сторон <i>AC</i> и <i>BC</i> соответственно, а длины этих сторон равны соответственно <i>a</i> и <i>b</i>. Найти максимум суммы <i>OM + ON</i>, когда угол <i>ACB</i> меняется.
Для каждой пары действительных чисел<i>a</i>и<i>b</i>рассмотрим последовательность чисел<i>p</i><sub>n</sub>= [2{<i>an</i>+<i>b</i>}]. Любые<i>k</i>подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины<i>k</i>будет словом последовательности, заданной некоторыми<i>a</i>и<i>b</i>при<i>k</i>= 4; при<i>k</i>= 5? Примечание: [<i>c</i>] - целая часть, {<i>c</i>} - дробная часть числа <i>c</i>.
Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?
При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа <i>A + B</i>?
Каждой паре чисел <i>x</i> и <i>y</i> поставлено в соответствие некоторое число <i>x</i><i>y</i>. Найдите 19931935, если известно, что для любых трёх чисел <i>x, y, z</i> выполнены тождества: <i>x</i><i>x</i> = 0 и <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i><i>y</i>) + <i>z</i>.
Найдите <i>x</i><sub>1000</sub>, если <i>x</i><sub>1</sub> = 4, <i>x</i><sub>2</sub> = 6, и при любом натуральном <i>n</i> ≥ 3 <i>x<sub>n</sub></i> – наименьшее составное число, большее 2<i>x</i><sub><i>n</i>–1</sub> – <i>x</i><sub><i>n</i>–2</sub>.
На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?
Известно, что число <i>n</i> является суммой квадратов трёх натуральных чисел. Показать, что число <i>n</i>² тоже является суммой квадратов трёх натуральных чисел.
В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются <i>непохожими</i>, если они различаются не менее, чем по 51 признаку.
а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
б) А может ли быть ровно 50?
Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
а) 700 м?
б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)