Задача
Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения вертикальных и горизонтальных прямых. При этом каждый из них своим ходом должен отметить такой узел, что после этого все отмеченные узлы лежали в вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто выигрывает при правильной игре?
Решение
Ответ:Витя. После первого хода Коли Витя мысленно отмечает произвольный узелO, отличный от того, который отметил Коля. Затем он каждый раз отмечает узел, симметричный относительноOтому узлу, который отметил Коля. Ясно, что при этом снова получается выпуклый многоугольник. После шести ходов получается центрально симметричный шестиугольник. В дальнейшем можно отмечать только узлы, лежащие в шести треугольниках, образованных сторонами шестиугольника и продолжениями сторон. Поэтому у Коли есть только конечное число возможных ходов.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь