Олимпиадные задачи из источника «1979 год» - сложность 3 с решениями
Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса которых отличается от 10 кг на наименьшее возможное для данного набора число <i>d</i>. Какое максимальное значение может принимать число <i>d</i> для всевозможных наборов камней?
Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения вертикальных и горизонтальных прямых. При этом каждый из них своим ходом должен отметить такой узел, что после этого все отмеченные узлы лежали в вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто выигрывает при правильной игре?