Олимпиадные задачи из источника «Математический праздник» для 9 класса - сложность 2 с решениями
Математический праздник
НазадУ подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?
На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает <sup>1</sup>/<sub>7</sub> репок, а если заходит Мышка, то она выдергивает только <sup>1</sup>/<sub>12</sub> репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?
Если у осьминога четное число ног, он всегда говорит правду. Если нечетное, то он всегда лжет. Однажды зеленый осьминог сказал темно-синему:
- У меня 8 ног. А у тебя только 6.
- Это у меня 8 ног, - обиделся темно-синий. - А у тебя всего 7.
- У темно-синего действительно 8 ног, - поддержал фиолетовый и похвастался: - А вот у меня целых 9!
- Ни у кого из вас не 8 ног, - вступил в разговор полосатый осьминог. - Только у меня 8 ног! У кого из осьминогов было ровно 8 ног?
Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час.
Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?
Дима живёт в девятиэтажном доме. Он спускается на лифте со своего этажа на первый за 1 минуту. Из-за маленького роста Дима не достаёт до кнопки своего этажа. Поэтому, поднимаясь наверх, он нажимает ту кнопку, до которой может дотянуться, а дальше идёт пешком. Весь путь наверх занимает 1 минуту 10 секунд. Лифт движется вверх и вниз с одинаковой скоростью, а Дима поднимается вдвое медленнее лифта. На каком этаже живет Дима?
На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.
У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки?
В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта
а) 7 участников;
б) 8 участников?
Дан прямоугольный треугольник (см. рисунок). Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами. <img src="/storage/problem-media/103855/problem_103855_img_2.gif">
Два пешехода вышли на рассвете. Каждый шёл с постоянной скоростью. Один шёл из <i>A</i> в <i>B</i>, другой – из <i>B</i> в <i>A</i>. Они встретились в полдень и, не прекращая движения, пришли: один – в <i>B</i> в 4 часа вечера, а другой – в <i>A</i> в 9 часов вечера. В котором часу в тот день был рассвет?
Из Москвы вылетел вертолёт, который пролетел 300 км на юг, потом 300 км на запад, 300 км на север и 300 км на восток, после чего приземлился. Оказался ли он южнее Москвы, севернее её или на той же широте? Оказался ли он восточнее Москвы, западнее Москвы или на той же долготе?
Квадрат4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)
Если смотреть на аквариум спереди, то рыбка проплыла, как показано на левом рисунке. А если справа — то как на правом рисунке. Нарисуйте вид сверху.<img src="/storage/problem-media/103823/problem_103823_img_2.gif">
В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
а) 5 человек? б) 8 человек?
Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)<img src="/storage/problem-media/103816/problem_103816_img_2.gif">
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?
В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.
Может ли горящая в комнате свеча не освещать полностью ни одну из её стен, если в комнате а) 10 стен, б) 6 стен?
Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.
У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие. Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?
В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
Два квадрата расположены как на рисунке, отмеченные отрезки равны. Докажите, что треугольник<i>BDG</i>равнобедренный.<figure> <img width="200px" src="/storage/problem-media/67174/problem_67174_img_2.png"> </figure>
Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду. Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов. <figure> <img width="200" src="/storage/problem-media/67173/problem_67173_img_2.png"> <img width="150" src="/storage/problem-media/67173/problem_67173_img_3.png"> </figure> Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов б...