Олимпиадные задачи из источника «1994 год»

В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.

На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать? <img src="/storage/problem-media/103786/problem_103786_img_2.gif">

Имеется много красных, жёлтых и зелёных кубиков1×1×1. Можно ли сложить из них куб3×3×3 так, чтобы в каждом блоке3×1×1 присутствовали все три цвета?

Когда Незнайку попросили придумать задачу для математической олимпиады в Солнечном городе, он написал ребус (см. рисунок). Можно ли его решить? (Разным буквам должны соответствовать разные цифры.)<img src="/storage/problem-media/103784/problem_103784_img_2.gif">

Во всех подъездах дома одинаковое число этажей, а на каждом этаже одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 105 квартир?

За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся

  а) 15 одноклассников;

  б) 16 одноклассников?

Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.

Составьте куб3×3×3 из красных, жёлтых и зелёных кубиков1×1×1 так, чтобы в любом бруске3×1×1 были кубики всех трёх цветов.

Несколько одинаковых по численности бригад сторожей спали одинаковое число ночей. Каждый сторож проспал больше ночей, чем сторожей в бригаде, но меньше, чем число бригад. Сколько сторожей в бригаде, если все сторожа вместе проспали 1001 человеко-ночь?

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.

Сколько человек в семье?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка