Олимпиадные задачи из источника «Кружки МЦНМО» для 8-11 класса - сложность 2-4 с решениями
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех <b>цифр</b> равна 13. Каково расстояние от Ёлкино до Палкино?
Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.
Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.
Доказать, что число <i>n</i><sup>5</sup> – 5<i>n</i>³ + 4<i>n</i> делится на 120 при любом натуральном <i>n</i>.
Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.
На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?
По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.
После проверки диктанта выяснилось, что учеников, которые ошиблись при написании слова «интеллект» в точности столько же, сколько написавших это слово правильно. Могло ли за этот диктант пятерок быть поставлено ровно на 15 меньше, чем остальных оценок?
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.
Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?
Имеются двое песочных часов — на 7 минут и на 11 минут. Яйцо варится 15 минут. Как отмерить это время при помощи имеющихся часов?
На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.
Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.
Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные. <div align="center"><img src="/storage/problem-media/102865/problem_102865_img_2.gif"></div>
Какие буквы соответствуют цифрам частного? Восстановите все цифры, если с = 7. <div align="center"><img src="/storage/problem-media/102864/problem_102864_img_2.gif"></div>
Восстановите пример на умножение <div align="center"><img src="/storage/problem-media/102863/problem_102863_img_2.gif"></div>
<b>Умножение чисел.</b>Восстановите пример на умножение натуральных чисел, если известно, что сумма цифр у обоих сомножителей одинакова. <div align="center"><img src="/storage/problem-media/102862/problem_102862_img_2.gif"></div>
Подсчитать сумму цифр числа (999..99)<sup>3</sup>(в скобке 2002 девятки).
Найти сумму 1 + 2002 + 2002<sup>2</sup>+ ... + 2002<sup><i>n</i></sup>.
Решите уравнение 12<i>a</i> + 11<i>b</i> = 2002 в натуральных числах.