Назад

Олимпиадная задача по теории чисел: доказательство делимости в круге для 6-8 классов

Задача

По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.

Решение

Решение задачи отсутствует

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет