Олимпиадные задачи из источника «глава 9. Уравнения и системы» для 9 класса

Имеется система уравнений     *<i>x + *y + *z</i>= 0,     *<i>x + *y + *z</i>= 0,     *<i>x + *y + *z</i>= 0.Два человека поочерёдно вписывают вместо звёздочек числа.

Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.

Найти все действительные решения системы уравнений   <img align="absmiddle" src="/storage/problem-media/78118/problem_78118_img_2.gif">

Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.

Докажите, что все гири имеют одну и ту же массу, если известно, что:

  а) масса каждой гири равна целому числу граммов;

  б) масса каждой гири равна рациональному числу граммов;

  в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.

Решите системы уравнений: а)   <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub> = 0,

      <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub> + <i>x</i><sub>4</sub> = 0,

&nbsp     ...

      <i>x</i><sub>99</sub> + <i>x</i><sub>100</sub> + <i>x</i><sub>1</sub> = 0,

      <i>x</i><sub>100</sub> + <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> = 0; б)   <i>x + y + z = a</i>,

      <i>y + z + t = b</i>,

      <i>y + z + t = c</i>,

      <...

Исследуйте системы уравнений: а) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_3.gif"> б) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_4.gif"> в) <img width="20" height="73" align="MIDDLE" borde...

Составьте систему, состоящую из двух линейных уравнений, для которой строки  (1, 1, 1, 1)  и  (1, 2, 2, 1)  служат решениями.

Может ли система линейных уравнений с действительными коэффициентами иметь в точности два различных решения?

Решите системы уравнений. Для каждой из них выясните, при каких значениях параметров система не имеет решений, а при каких имеет бесконечно много решений. а) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="130" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_3.gif">б) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="138" height="54" align="MIDDLE" border="0" src="/storage/problem-media/...

За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если

  а) в конце у всех гномов молока оказалось поровну?

  б) в конце у всех гномов оказалось молока столько, сколько было в начале?

На рисунках изображены разбиения прямоугольников на квадраты. Найдите стороны этих квадратов, если в первом случае сторона наименьшего квадрата равна 1, а во втором — 2. а) <img width="105" height="89" align="BOTTOM" border="0" src="/storage/problem-media/61342/problem_61342_img_2.gif" alt="\begin{picture} (75,65)\put(0,0){\line(1,0){65}}\put(0,55){\line(1,0){65}} \pu... ...e(0,1){20}}\put(65,0){\line(0,1){55}} \put(30,20){\line(0,1){35}} \end{picture}">

б) <img width="111" height="98" align="BOTTOM" border="0" src="/storage/problem-media/61342/problem_61342_img_3.gif" alt="\begin{picture} (55,65)\put(0,0){\line(1,0){69}}\put(0,61){\line(1,0){69}}\put(... ...(0,1){25...

Решите системы а) <img width="20" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_2.gif"><img width="190" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_3.gif">б) <img width="20" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_4.gif"><img width="203" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_5.gif"> в) <img width="20" height="92" align="MIDDLE" border="0"...

Коля Васин гулял после школы пять часов. Сначала он шёл по горизонтальной дороге, затем поднялся в гору и, наконец, по старому маршруту возвратился назад в исходный пункт. Его скорость была 4 км/ч на горизонтальном участке пути, 3 км/ч при подъеме в гору и 6 км/ч – при спуске с горы. Какое расстояние прошёл Коля Васин?

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные <i>n</i>-угольники. Обозначим их периметры через <i>P<sub>n</sub></i> (для описанного) и <i>p<sub>n</sub></i> (для вписанного).

   а) Найдите <i>P</i><sub>4</sub>, <i>p</i><sub>4</sub>, <i>P</i><sub>6</sub> и <i>p</i><sub>6</sub>.

   б) Докажите, что справедливы следующие рекуррентные соотношения:    <i>P</i><sub>2<i>n</i></sub> = <img width="63" height="51" align="MIDDLE" border="0" src="/storage/problem-media/61335/problem_61335_img_2.gif">,        <i>p</i&...

Решите уравнение$\sqrt{a+\sqrt{a+\sqrt{a+x}}}$=<i>x</i>.

Докажите, что для монотонно возрастающей функции<i>f</i>(<i>x</i>) уравнения<i>x</i>=<i>f</i>(<i>f</i>(<i>x</i>)) и<i>x</i>=<i>f</i>(<i>x</i>) равносильны.

Последовательность чисел {<i>a</i><sub>n</sub>} задана условиями<div align="CENTER"> <i>a</i><sub>1</sub> = 1,        <i>a</i><sub>n + 1</sub> = <i>a</i><sub>n</sub> + $\displaystyle {\dfrac{1}{a_n^2}}$    (<i>n</i> $\displaystyle \geqslant$ 1). </div>Верно ли, что эта последовательность ограничена?

Геометрической интерпретацией итерационного процесса служит<i>итерационная ломаная</i>. Для ее построения на плоскости<i>Oxy</i>рисуется график функции<i>f(x)</i>и проводится биссектриса координатного угла — прямая<i>y</i>=<i>x</i>. Затем на графике функции отмечаются точки<i>A<sub>0</sub>(x<sub>0</sub>,f(x<sub>0</sub>))</i>,<i>A<sub>1</sub>(x<sub>1</sub>,f(x<sub>1</sub>))</i>,...,<i>A<sub>n</sub>(x<sub>n</sub>,f(x<sub>n</sub>))</i>,... а на биссектрисе координатного угла — точки<i>B<sub>0</sub>(x<sub>0</sub>,x<sub>0</sub>)</i>,<i>B<...

Зафиксируем числа<i>a</i><sub>0</sub>и<i>a</i><sub>1</sub>. Построим последовательность {<i>a</i><sub>n</sub>} в которой<div align="CENTER"> <i>a</i><sub>n + 1</sub> = $\displaystyle {\frac{a_n+a_{n-1}}{2}}$        (<i>n</i> $\displaystyle \geqslant$ 1). </div>Выразите<i>a</i><sub>n</sub>через<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>и<i>n</i>.

Пусть<i>a</i>и<i>k</i>> 0 произвольные числа. Определим последовательность {<i>a</i><sub>n</sub>} равенствами<div align="CENTER"> <i>a</i><sub>0</sub> = <i>a</i>,        <i>a</i><sub>n + 1</sub> = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{a_n+\frac{k}{a_n}}\right.$<i>a</i><sub>n</sub> + $\displaystyle {\frac{k}{a_n}}$$\displaystyle \left.\vphantom{a_n+\frac{k}{a_n}}\right)$    (<i>n</i> $\displaystyle \geqslant$ 0). </div>Докажите, что при любом неотрицательном<i>n</i>выполняется равенство<div align="CENTER"> $\displaystyle {\frac{a_n-\sqrt k}{a_n+\sqrt k}}$ = $\displa...

Имеются два сосуда. В них разлили 1 л воды. Из первого сосуда переливают половину воды во второй, затем из второго переливают половину оказавшейся в нем воды в первый, затем из первого сосуда переливают половину оказавшейся в нем воды во второй и т. д. Докажите, что независимо от того, сколько воды было сначала в каждом из сосудов, после 100 переливаний в них будет${\frac{2}{3}}$л и${\frac{1}{3}}$л с точностью до 1 миллилитра.

Решите уравнение:<div align="CENTER"> $\displaystyle \sqrt{\dfrac{1+2x\sqrt{1-x^2}}{2}}$ + 2<i>x</i><sup>2</sup> = 1. </div>

Решите систему:

  <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61294/problem_61294_img_2.gif"><img width="136" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61294/problem_61294_img_3.gif">

Решите систему: $\left{\vphantom{ \begin{array}{rcl} \hbox{\rm tg\ }x\cdot\hbox{\rm tg\ }z&=... ...box{\rm tg\ }y\cdot\hbox{\rm tg\ }z&=&6,\ x+y+z&=&\pi. \end{array} }\right.$$\begin{array}{rcl} \hbox{\rm tg\ }x\cdot\hbox{\rm tg\ }z&=&3,\ \hbox{\rm tg\ }y\cdot\hbox{\rm tg\ }z&=&6,\ x+y+z&=&\pi. \end{array}$

Пусть<i>xy</i>+<i>yz</i>+<i>xz</i>= 1. Докажите равенство:<div align="CENTER"> $\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$. </div>

Решите системы:

  a)  <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61291/problem_61291_img_2.gif"><img width="138" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61291/problem_61291_img_3.gif">

  б)  <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61291/problem_61291_img_2.gif"><img width="138" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61291/problem_61291_img_4.gif">

  в)  <img width="20" height="73" align="MIDDLE" bo...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка