Назад
Задача

Пустьaиk> 0 произвольные числа. Определим последовательность {an} равенствами

a0 = a,        an + 1 = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{a_n+\frac{k}{a_n}}\right.$an + $\displaystyle {\frac{k}{a_n}}$$\displaystyle \left.\vphantom{a_n+\frac{k}{a_n}}\right)$    (n $\displaystyle \geqslant$ 0).

Докажите, что при любом неотрицательномnвыполняется равенство
$\displaystyle {\frac{a_n-\sqrt k}{a_n+\sqrt k}}$ = $\displaystyle \left(\vphantom{\frac{a-\sqrt k}{a+\sqrt k}}\right.$$\displaystyle {\frac{a-\sqrt k}{a+\sqrt k}}$$\displaystyle \left.\vphantom{\frac{a-\sqrt k}{a+\sqrt k}}\right)^{2^n}_{}$.
Решение

Решение задачи отсутствует

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет