Олимпиадные задачи из источника «Рамблер-Наука - задача дня (www.nature.ru)» - сложность 1 с решениями
Рамблер-Наука - задача дня (www.nature.ru)
НазадПетя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?
В корзине лежат 30 грибов – рыжиков и груздей. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов – хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?
Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?
Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них <i>a</i> человек считают, что будет лучше, <i>b</i> – что будет такой же, и <i>c</i> – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: <i>m = a + <sup>b</sup></i>/<sub>2</sub> и <i>n = a – c</i>. Оказалось, что <i>m</i> = 40. Найдите <i>n</i>.
<i>p</i>(<i>x</i>) – многочлен с целыми коэффициентами. Известно, что для некоторых целых <i>a</i> и <i>b</i> выполняется равенство: <i>p</i>(<i>a</i>) – <i>p</i>(<i>b</i>) = 1.
Докажите, что <i>a</i> и <i>b</i> различаются на 1.
Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?
Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.
<i>a, b, c</i> – такие три числа, что <i>a + b + c</i> = 0. Доказать, что в этом случае справедливо соотношение <i>ab + ac + bc</i> ≤ 0.
Поезд проходит мимо наблюдателя в течение <i>t</i><sub>1</sub> секунд, при той же скорости он проходит через мост длиной в <i>a</i> метров в течение <i>t</i><sub>2</sub> секунд.
Найти длину и скорость поезда.
Существует ли четырехугольная пирамида, у которой две противоположные боковые грани перпендикулярны основанию?
В одной урне лежат два белых шара, в другой два черных, в третьей - один белый и один черный. На каждой урне висела табличка, указывающее ее содержимое: ББ, ЧЧ, БЧ. Некто перевесил таблички так, что теперь каждая табличка указывает содержимое урны неправильно. Разрешается вынуть шар из любой урны, не заглядывая в нее. Какое наименьшее число извлечений потребуется, чтобы определить состав всех трех урн?
В коридоре длиной 100 м постелено 20 дорожек общей длиной 1 км. Ширина каждой дорожки равна ширине коридора.
Какова максимально возможная суммарная длина незастеленных участков коридора?
Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.
Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа?
В пространстве даны параллелограмм <i>ABCD</i> и плоскость <i>M</i>. Расстояния от точек <i>A</i>, <i>B</i> и <i>C</i> до плоскости <i>M</i> равны соответственно <i>a</i>, <i>b</i> и <i>c</i>.
Найти расстояние <i>d</i> от вершины <i>D</i> до плоскости <i>M</i>.
Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?
Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами?
В пространстве дана плоскость П и точки A и B по одну сторону от П (AB не параллельно П). Рассматриваются сферы, проходящие через точки A и B, касающиеся плоскости П. Докажите, что точки касания этих сфер и плоскости П лежат на одной окружности.
Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!.
Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.
Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?
Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?
Можно ли из квадрата со стороной 10 см вырезать несколько кругов, сумма диаметров которых больше 5 м?
Из произвольной точки круглого бильярдного стола пущен шар. Докажите, что внутри стола найдётся такая окружность, что траектория шара её ни разу не пересечёт.