Задача
Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.
Решение
Если у многогранника четыре вершины, то это тетраэдр, имеющий шесть рёбер. Пусть число n вершин многогранника не меньше пяти. В каждой вершине многогранника сходится по крайней мере три грани, таким образом, из каждой вершины многогранника выходит не меньше трёх рёбер. Значит, всего ребёр не меньше чем 3n/2 > 7.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет