Олимпиадные задачи по теме «Геометрические методы» для 11 класса - сложность 1-5 с решениями
Геометрические методы
НазадИзобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .
Найдите наибольшее значение выражения <i>x</i>² + <i>y</i>², если |<i>x – y</i>| ≤ 2 и |3<i>x + y</i>| ≤ 6.
В треугольнике <i>ABC</i> высоты или их продолжения пересекаются в точке <i>H</i>, а <i>R</i> – радиус его описанной окружности.
Докажите, что если ∠<i>A</i> ≤ ∠<i>B</i> ≤ ∠<i>C</i>, то <i>AH + BH</i> ≥ 2<i>R</i>.
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
В прямоугольном параллелепипеде <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> четыре числа – длины рёбер и диагонали <i>AC</i><sub>1</sub> – образуют арифметическую прогрессию с положительной разностью <i>d</i>, причём <i>AA</i><sub>1</sub> < <i>AB</i> < <i>BC</i>. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса <i>R</i> расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней <i>ABB</i><sub>1</sub><i>A</i><sub>1</sub>, <i>ADD</i>...
В правильной треугольной пирамиде <i>ABCD</i> сторона основания <i>ABC</i> равна 4, угол между плоскостью основания <i>ABC</i> и боковой гранью равен <img align="middle" src="/storage/problem-media/116519/problem_116519_img_2.gif">. Точки <i>K</i>, <i>M</i>, <i>N</i> – середины отрезков <i>AB</i>, <i>DK</i>, <i>AC</i> соответственно, точка <i>E</i> лежит на отрезке <i>CM</i> и 5<i>ME = CE</i>. Через точку <i>E</i> проходит плоскость П перпендикулярно отрезку <i>CM</i>. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки <i...
В правильной треугольной пирамиде <i>ABCD</i> длина бокового ребра равна 12, а угол между основанием <i>ABC</i> и боковой гранью равен <img align="middle" src="/storage/problem-media/116518/problem_116518_img_2.gif">. Точки <i>K</i>, <i>M</i>, <i>N</i> – середины рёбер <i>AB</i>, <i>CD</i>, <i>AC</i> соответственно. Точка <i>E</i> лежит на отрезке <i>KM</i> и 2<i>ME</i> = <i>KE</i>. Через точку <i>E</i> проходит плоскость П перпендикулярно отрезку <i>KM</i>. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки <i>N</i...
В кубе <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>, ребро которого равно 6, точки <i>M</i> и <i>N</i> – середины рёбер <i>AB</i> и <i>B</i><sub>1</sub><i>C</i><sub>1</sub> соответственно, а точка <i>K</i> расположена на ребре <i>DC</i> так, что
<i>DK</i> = 2<i>KC</i>. Найдите
а) расстояние от точки <i>N</i> до прямой <i>AK</i>;
б) расстояние между прямыми <i>MN</i> и <i>AK</i>;
в) расстояние от точки <i>A</i><sub>1</sub> до плоскости треуго...
Прямая пересекает график функции <i>y = x</i>² в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .
В пространстве даны точки<i> A</i>(<i>-</i>1<i>;</i>2<i>;</i>0),<i> B</i>(5<i>;</i>2<i>;-</i>1),<i> C</i>(2<i>;-</i>1<i>;</i>4)и<i> D</i>(<i>-</i>2<i>;</i>2<i>;-</i>1). Найдите: а) расстояние от вершины<i> D </i>тетраэдра<i> ABCD </i>до точки пересечения медиан основания<i> ABC </i>; б) уравнение плоскости<i> ABC </i>; в) высоту тетраэдра, проведённую из вершины<i> D </i>; г) угол между прямыми<i> BD </i>и<i> AC </i>; д) угол между гранями<i> ABC </i>и<i> ACD </i>; е) расстояние между прямыми<i> BD </i>и<...
B выпуклом четырёхугольнике <i>ABCD</i>: <i>AC</i> ⊥ <i>BD</i>, ∠<i>BCA</i> = 10°, ∠<i>BDA</i> = 20°, ∠<i>BAC</i> = 40°. Найдите ∠<i>BDC</i>.
В кубе <i>АВСDA'B'C'D'</i> с ребром 1 точки <i>T, Р</i> и <i>Q</i> – центры граней <i>AA'B'B, A'B'C'D</i>' и <i>BB'C'C</i> соответственно.
Найдите расстояние от точки <i>Р</i> до плоскости <i>АTQ</i>.
В тетраэдре<i> ABCD </i>ребро<i> AB </i>перпендикулярно ребру<i> CD </i>,<i> P </i>— произвольная точка пространства. Докажите, что сумма квадратов расстояний от точки<i> O </i>до середин рёбер<i> AC </i>и<i> BD </i>равна сумме квадратов расстояний от точки<i> P </i>до середин рёбер<i> AD </i>и<i> BC </i>.
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?
Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом.
На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?
Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине<i> A </i>квадрата<i> ABCD </i>находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке<i> A </i>). Вначале лиса сидит в точке<i> C </i>, а зайцы – в точках<i> B </i>и<i> D </i>. Лиса бегает повсюду со скоростью не больше<i> v </i>, а зайцы – по лучам<i> AB </i>и<i> AD </i>со скоростью не больше 1. При каких значениях<i> v </i>лиса сможет поймать обоих зайцев?
Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.
Основание прямоугольного параллелепипеда<i> ABCDA</i>1<i>B</i>1<i>C</i>1<i>D</i>1– прямоугольник<i> ABCD </i>со сторонами<i> AB=</i>2и<i> BC=</i>4. Высота<i> OO</i>1параллелепипеда равна 4 (<i> O </i>и<i> O</i>1– центры граней<i> ABCD </i>и<i> A</i>1<i>B</i>1<i>C</i>1<i>D</i>1соответственно). Сфера радиуса 3 с центром на высоте<i> OO</i>1касается плоскости основания. Найдите сумму квадратов расстояний от точки, принадлежащей сфере, до всех вершин параллелепипеда при условии, что она максимальна.
Плоскость проходит через сторону основания правильной четырёхугольной пирамиды и делит пополам двугранный угол при этой стороне. Найдите площадь основания пирамиды наименьшего объёма, если известно, что указанная плоскость пересекает высоту пирамиды в точке, удалённой на расстояние<i> d </i>от плоскости основания.
Докажите, что суммы квадратов расстояний от произвольной точки пространства до противоположных вершин прямоугольника равны между собой.
В кубе<i>ABCDA</i>₁<i>B</i>₁<i>C</i>₁<i>D</i>₁, ребро которого равно 4, точки<i>E</i>и<i>F</i> ─ середины рёбер<i>AB</i>и<i>B</i>₁<i>C</i>₁ соответственно, а точка<i>P</i>расположена на ребре<i>CD</i>так, что<i>PD</i> = 3<i>PC</i>. Найдите
-
расстояние от точки<i>F</i>до прямой<i>AP</i>;
-
расстояние между прямыми<i>EF</i>и<i>AP</i>;
-
расстояние от точки<i>A</i>₁ до плоскости треугольника<i>EFP</i>.