Олимпиадные задачи по теме «Алгебраические методы» для 10 класса - сложность 5 с решениями
Алгебраические методы
НазадНа плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине<i> A </i>квадрата<i> ABCD </i>находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке<i> A </i>). Вначале лиса сидит в точке<i> C </i>, а зайцы – в точках<i> B </i>и<i> D </i>. Лиса бегает повсюду со скоростью не больше<i> v </i>, а зайцы – по лучам<i> AB </i>и<i> AD </i>со скоростью не больше 1. При каких значениях<i> v </i>лиса сможет поймать обоих зайцев?
У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.
В квадрате<i> n</i>×<i>n </i>клеток бесконечной шахматной доски расположены<i> n<sup>2</sup> </i>фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через[<i><img src="/storage/problem-media/109694/problem_109694_img_2.gif"></i>]ходов.
Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.
На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:<ol> <li> Снять по одному камню с клеток <i> n-</i>1 и <i> n </i> и положить один камень в клетку <i> n+</i>1; </li> <li> Снять два камня с клетки <i> n </i> и положить по одному камню в клетки <i> n+</i>1, <i> n-</i>2.</li></ol>Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
Докажите, что существует такое натуральное число<i> n </i>, что если правильный треугольник со стороной<i> n </i>разбить прямыми, параллельными его сторонам, на<i> n<sup>2</sup> </i>правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать1993<i>n </i>точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы. а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна? б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2. в) Докажите, что для любого числа <i>s</i>>1/2 существует надёжная система бойниц с суммарной длиной, меньшей <i>s</i>.
Прямоугольный лист бумаги размером<i>a</i>×<i>b</i>см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел<i>a</i>или<i>b</i>целое.
Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
В пространстве расположен правильный додекаэдр. Сколькими способами можно провести плоскость так, чтобы она высекла на додекаэдре правильный шестиугольник?
В пространстве расположены 3 плоскости и шар. Сколькими различными способами можно поместить в пространстве второй шар так, чтобы он касался трёх данных плоскостей и первого шара? (<i>В этой задаче речь фактически идёт о касании сфер, т.е. не предполагается, что шары могут касаться только внешним образом — прим. ред.</i>)
При каких <i>n</i> правильный <i>n</i>-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)
На<i>n</i>карточках, выложенных по окружности, записаны числа, каждое из которых<nobr>равно 1</nobr><nobr>или –1.</nobr>За какое наименьшее число вопросов можно наверняка определить произведение всех<nobr><i>n</i> чисел,</nobr>если за один вопрос разрешено узнать произведение чисел на<nobr>а) любых</nobr>трёх карточках;<nobr>б) любых</nobr>трёх карточках, лежащих подряд? (Здесь<nobr><i>n</i> —</nobr>натуральное число,<nobr>большее 3).</nobr>
а) На плоскости даны<i>n</i>векторов, длина каждого из которых<nobr>равна 1.</nobr>Сумма всех<i>n</i>векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех<nobr><i>k</i> = 1,</nobr>2, ...,<i>n</i>выполнялось следующее условие: длина суммы первых<nobr><i>k</i> векторов</nobr>не<nobr>превышает 3.</nobr>б) Докажите аналогичное утверждение для <i>n</i> векторов с <nobr>суммой 0,</nobr> длина каждого из которых не <nobr>превосходит 1.</nobr> в) Можно ли заменить <nobr>число 3</nobr> в <nobr>пункте а)</nobr> меньшим? Постарайтесь улучшить оценку и в <nobr>пункте б).</nobr>
На бесконечном клетчатом листе белой бумаги<i>n</i>клеток закрашены в чёрный цвет. В моменты времени<nobr><i>t</i> = 1,</nobr>2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка<i>k</i>приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки<i>k</i>и её соседей справа и сверху (если две или три из этих клеток были белыми, то<i>k</i>становится белой, если две или три из них были чёрными,— то чёрной).а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки. б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени <nobr><i>t</i> = <i>n</i>.</nobr>
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это.<span class="prim">(Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)</span>б) Для любых двух <nobr>вершин <i>A</i></nobr> <nobr>и <i>B</i></nobr> любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника <nobr>из <i>А</i></nobr> <nobr>в <i>В</i></nobr> и никакие две не проходят по одному ребру. Докажите это. в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его <nobr>вершин <i>А</i></nobr> <nobr>и <i>В</i></nobr&g...
На доске написано несколько чисел. Разрешается стереть любые два числа $a$ и $b$, а затем вместо одного из них написать число $\frac{a+b}{4}$. Какое наименьшее число может остаться на доске после 2018 таких операций, если изначально на ней написано 2019 единиц?