Олимпиадные задачи по теме «Математический анализ» для 4-7 класса

Найдите все такие функции  <i>f</i>(<i>x</i>), что  <i>f</i>(2<i>x</i> + 1) = 4<i>x</i>² + 14<i>x</i> + 7.

В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

Решить уравнение  [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.

Найдите последнее число.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:

  1)  <i>x</i>*<i>x</i> = 0,

  2)  <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.

Найдите 1993*1932.

Решить в натуральных числах уравнение:   <img align="absmiddle" src="/storage/problem-media/98024/problem_98024_img_2.gif">

Найдется ли такое <i>n</i>, при котором  <img align="middle" src="/storage/problem-media/88296/problem_88296_img_2.gif" width="141" height="41"> ?   А больше 1000?

На доску записали числа $1$, $2$, ..., $100$. Далее за ход стирают любые два числа $a$ и $b$, где $a\geqslant b>0$, и пишут вместо них одно число $[a/b]$. После $99$ ходов на доске останется одно число. Каким наибольшим оно может быть? (Напомним, что $[x]$ — это наибольшее целое число, не превосходящее $x$.)

Известно, что  <i>а</i> > 1.  Обязательно ли имеет место равенство  <img align="absmiddle" src="/storage/problem-media/65593/problem_65593_img_2.gif"> = <img align="middle" src="/storage/problem-media/65593/problem_65593_img_3.gif">?

В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...

Пусть число α задаётся десятичной дробью

  а) 0,101001000100001000001...;

  б) 0,123456789101112131415....

Будет ли это число рациональным?

Докажите, что для действительного положительного α и натурального <i>d</i> всегда выполнено равенство  [<sup>α</sup>/<sub><i>d</i></sub>] = [<sup>[α]</sup>/<sub><i>d</i></sub>].

Пусть α – действительное положительное число, <i>d</i> – натуральное.

Докажите, что количество натуральных чисел, не превосходящих α и делящихся на <i>d</i>, равно  [<sup>α</sup>/<sub><i>d</i></sub>].

Доказать, что если несократимая рациональная дробь  <sup><i>p</i></sup>/<sub><i>q</i></sub>  является корнем многочлена <i>P</i>(<i>x</i>) с целыми коэффициентами, то  <i>P</i>(<i>x</i>) = (<i>qx – p</i>)<i>Q</i>(<i>x</i>),  где многочлен <i>Q</i>(<i>x</i>) также имеет целые коэффициенты.

(Продолжение задачи <a href="https://mirolimp.ru/tasks/132796">132796</a>)

  Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка