Олимпиадные задачи по теме «Геометрия» для 8-9 класса - сложность 2-4 с решениями

Точка <i>А</i> лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), <i>В</i> – наиболее удалённая от неё точка на окружности нижнего основания, <i>С</i> – произвольная точка окружности нижнего основания. Найдите <i>АВ</i>, если  <i>АС</i> = 12,  <i>BC</i> = 5. <div align="center"><img src="/storage/problem-media/116998/problem_116998_img_2.gif"></div>

В треугольнике <i>ABC</i> угол <i>B</i> равен 60°. Точка <i>D</i> внутри треугольника такова, что  ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i>.

Найдите наименьшее значение площади треугольника <i>ABC</i>, если  <i>BD = a</i>.

В треугольнике <i>АВС</i> проведена биссектриса <i>АА</i><sub>1</sub>. Докажите, что серединный перпендикуляр к <i>АА</i><sub>1</sub>, перпендикуляр к <i>ВС</i>, проходящий через точку <i>А</i><sub>1</sub>, и прямая <i>АО</i> (<i>О</i> – центр описанной окружности) пересекаются в одной точке.

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).

Сколько существует треугольников с вершинами в отмеченных точках?

Центр <i>О</i> окружности, описанной около четырёхугольника <i>АВСD</i>, лежит внутри него. Найдите площадь четырёхугольника, если  ∠<i>ВАО</i> = ∠<i>DAC,

AC = m,  BD = n</i>.

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

Три попарно непересекающиеся окружности ω<sub><i>x</i></sub>, ω<sub><i>y</i></sub>, ω<sub><i>z</i></sub> радиусов <i>r<sub>x</sub>, r<sub>y</sub>, r<sub>z</sub></i> лежат по одну сторону от прямой <i>t</i> и касаются её в точках <i>X, Y, Z</i> соответственно. Известно, что <i>Y</i> – середина отрезка <i>XZ</i>,  <i>r<sub>x</sub> = r<sub>z</sub> = r</i>,  а  <i>r<sub>y</sub> > r</i>.  Пусть <i>p</i> – одна из общих внутренних касательных к окружностям ω<sub><i>x</i></sub> и ω<sub><i>y</i></sub>, а <i&g...

В окружность Ω вписан остроугольный треугольник <i>ABC</i>, в котором  <i>AB > BC</i>.  Пусть <i>P</i> и <i>Q</i> – середины меньшей и большей дуг <i>AC</i> окружности Ω, соответственно, а <i>M</i> – основание перпендикуляра, опущенного из точки <i>Q</i> на отрезок <i>AB</i>. Докажите, что описанная окружность треугольника <i>BMC</i> делит пополам отрезок <i>BP</i>.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём <i> расстоянием</i> между двумя точками длину меньшей дуги между ними. При каком наибольшем <i>n</i> можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на <i>n</i>, увеличилось?

К двум непересекающимся окружностям ω<sub>1</sub> и ω<sub>2</sub> проведены три общие касательные – две внешние, <i>a</i> и <i>b</i>, и одна внутренняя, <i>c</i>. Прямые <i>a, b</i> и <i>c</i> касаются окружности ω<sub>1</sub> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно, а окружности ω<sub>2</sub> – в точках <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> соответственно. Докажите, что отношение площадей треугольников <i>A</i><sub>1</sub><i>B</i&gt...

Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен  <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>)  получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен  <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>)  получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен  <i>P</i>(<i&g...

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Серединный перпендикуляр к стороне <i>AC</i> неравнобедренного остроугольного треугольника <i>ABC</i> пересекает прямые <i>AB</i> и <i>BC</i> в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> соответственно, а серединный перпендикуляр к стороне <i>AB</i> пересекает прямые <i>AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> соответственно. Описанные окружности треугольников <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CC</i><sub>1</sub><i>C</i><sub>2</sub> пересекаются в точках <i>P&lt...

Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)

Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

На сторонах <i>АВ, ВС</i> и <i>АС</i> равностороннего треугольника <i>АВС</i> выбраны точки <i>K, M</i> и <i>N</i> соответственно так, что угол <i>MKB</i> равен углу <i>MNC</i>, а угол <i>KMB</i> равен углу <i>KNA</i>. Докажите, что <i>NB</i> – биссектриса угла <i>MNK</i>.

В треугольнике <i>ABC</i> медиана, проведённая из вершины <i>A</i> к стороне <i>BC</i>, в четыре раза меньше стороны <i>AB</i> и образует с ней угол 60°. Найдите угол <i>А</i>.

В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

На стороне <i>BC</i> квадрата <i>ABCD</i> выбрали точку <i>M</i>. Пусть <i>X, Y, Z</i> – центры окружностей, вписанных в треугольники <i>ABM, CMD, AMD</i> соответственно; <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> – ортоцентры треугольников <i>AXB, CYD, AZD</i> соответственно. Докажите, что точки <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> лежат на одной прямой.

Дан треугольник <i>ABC</i>. Касательная в точке <i>C</i> к его описанной окружности пересекает прямую <i>AB</i> в точке <i>D</i>. Касательные к описанной окружности треугольника <i>ACD</i> в точках <i>A</i> и <i>C</i> пересекаются в точке <i>K</i>. Докажите, что прямая <i>DK</i> делит отрезок <i>BC</i> пополам.

Дан тетраэдр <i>ABCD</i>. Точка <i>X</i> выбрана вне тетраэдра так, что отрезок <i>XD</i> пересекает грань <i>ABC</i> во внутренней точке. Обозначим через <i>A', B', C'</i> проекции точки <i>D</i> на плоскости <i>XBC, XCA, XAB</i> соответственно. Докажите, что  <i>A'B' + B'C' + C'A' < DA + DB + DC</i>.

В окружность Ω вписан четырёхугольник <i>ABCD</i>, диагонали <i>AC</i> и <i>BD</i> которого перпендикулярны. На сторонах <i>AB</i> и <i>CD</i> во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.<div align="center"><img src="/storage/problem-media/116915/problem_116915_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка