Олимпиадные задачи по теме «Планиметрия» для 6 класса
Планиметрия
НазадМожно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
Биссектрисы треугольника <i>ABC</i> пересекаются в точке <i>I</i>, ∠<i>ABC</i> = 120°. На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> отмечены соответственно точки <i>P</i> и <i>Q</i> так, что <i>AP = CQ = AC</i>. Докажите, что угол <i>PIQ</i> – прямой.
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>
В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>K</i> и проведены биссектриса <i>KE</i> треугольника <i>AKC</i> и высота <i>KH</i> треугольника <i>BKC</i>. Оказалось, что угол <i>EKH</i> – прямой. Найдите <i>BC</i>, если <i>HC</i> = 5.
Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
а) за 5 или менее;
б) за 4 или менее;
в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>
Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?
На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?
Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.
Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. <div align="center"><img src="/storage/problem-media/116469/problem_116469_img_2.gif"></div>
На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.
<center><img align="absmiddle" src="/storage/problem-media/115380/problem_115380_img_2.gif"></center> После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два?
Саша разрезал шахматную доску8<i>× </i>8по границам клеток на30прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.
<center><i> <img align="absmiddle" src="/storage/problem-media/115377/problem_115377_img_2.gif"> </i></center>
Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя. <div align="center"><img align="absmiddle" src="/storage/problem-media/111899/problem_111899_img_2.gif"> </div>
Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?
Разрежьте какой-нибудь квадрат на квадратики двух разных размеров так, чтобы маленьких было столько же, сколько и больших.
Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. <center><img src="/storage/problem-media/110758/problem_110758_img_2.gif"></center>
Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.
Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии. <img src="/storage/problem-media/109426/problem_109426_img_2.gif">
В Совершенном городе шесть площадей. Каждая площадь соединена прямыми улицами ровно с тремя другими площадями. Никакие две улицы в городе не пересекаются. Из трёх улиц, отходящих от каждой площади, одна проходит внутри угла, образованного двумя другими. Начертите возможный план такого города.
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?
На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины <i>a</i>. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины <i>b</i>. Во сколько раз <i>b</i> больше <i>a</i>?
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов —<i>n</i>. Докажите, что общее число клеточек есть квадрат некоторого числа.<table> <tr><td>
_ ||_ ||||_ ||||||_ |||||||_| .....................
||||| ....... ||||| </pre> </td></tr> <tr><td>Рис. 1</td></tr> </table>
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Разрежьте изображённую на рисунке трапецию на три части и сложите из них квадрат. <img src="/storage/problem-media/105170/problem_105170_img_2.png">