Олимпиадные задачи по теме «Многочлены» для 4-7 класса - сложность 2 с решениями

Можно ли в записи  2013² – 2012² – ... – 2² – 1²  некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?

Два приведённых квадратных трёхчлена имеют общий корень, а дискриминант их суммы равен сумме их дискриминантов.

Докажите, что тогда дискриминант хотя бы одного из этих двух трёхчленов равен нулю.

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число <i>x</i>, при котором значение выражения  <i>x</i>² – 9<i>x</i> + 13  отрицательно. А если ввести число <i>x</i>, при котором отрицательно значение выражения  <i>x</i>² + <i>x</i> – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство:  <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>).   Следует ли из этого, что  <i>а = b = c</i>?

Является ли простым число  2011·2111 + 2500?

Существуют ли такие целые числа <i>x, y</i> и <i>z</i>, для которых выполняется равенство:  (<i>x – y</i>)³ + (<i>y – z</i>)³ + (<i>z – x</i>)³ = 2011?

Представьте числовое выражение  2·2009² + 2·2010²  в виде суммы квадратов двух натуральных чисел. .

Существуют ли нечётные целые числа <i>х, у</i> и <i>z</i>, удовлетворяющие равенству  (<i>x + y</i>)² + (<i>x + z</i>)² = (<i>y + z</i>)²?

Числа <i>a, b, c</i> таковы, что  <i>a</i>²(<i>b + c</i>) = <i>b</i>²(<i>a + c</i>) = 2008  и  <i>a ≠ b</i>.  Найдите значение выражения  <i>c</i>²(<i>a + b</i>).

Докажите, что числа от 1 до 15 нельзя разбить на две группы: <i>A</i> из двух чисел и <i>B</i> из 13 чисел так, чтобы сумма чисел в группе <i> B </i> была равна произведению чисел в группе <i>A</i>.

Мороженое стоит 2000 рублей. У Пети имеется  400<sup>5</sup> – 399²·(400³ + 2·400² + 3·400 + 4)  рублей. Достаточно ли у Пети денег на мороженое?

Известно, что уравнение  <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0  имеет три различных корня. Докажите, что уравнение  <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0  также имеет три различных корня.

Натуральное число <i>n</i> таково, что числа  2<i>n</i> + 1  и  3<i>n</i> + 1  являются квадратами. Может ли при этом число  5<i>n</i> + 3  быть простым?

Числа <i>a, b</i> и <i>c</i> отличны от нуля и выполняются равенства:  <i>a + <sup>b</sup></i>/<i><sub>c</sub> = b + <sup>c</sup></i>/<i><sub>a</sub> = c + <sup>a</sup></i>/<sub><i>b</i></sub> = 1.  Докажите, что  <i>ab + bc + ca</i> = 0.

Известно, что число <i>n</i> является суммой квадратов трёх натуральных чисел. Показать, что число <i>n</i>² тоже является суммой квадратов трёх натуральных чисел.

Про положительные числа <i>a, b, c</i> известно, что  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<i><sub>c</sub> ≥ a + b + c</i>.  Докажите, что  <i>a + b + c</i> ≥ 3<i>abc</i>.

Найдите все целые числа <i>x</i> и <i>y</i>, удовлетворяющие уравнению  <i>x</i><sup>4</sup> – 2<i>y</i>² = 1.

Пусть <i>a, b, c</i> – стороны треугольника. Докажите неравенство  <i>a</i>³ + <i>b</i>³ + 3<i>abc > c</i>³.

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

Решите уравнение  (<i>x</i> + 1)<sup>63</sup> + (<i>x</i> + 1)<sup>62</sup>(<i>x</i> – 1) + (<i>x</i> + 1)<sup>61</sup>(<i>x</i> – 1)² + ... + (<i>x</i> – 1)<sup>63</sup> = 0.

Найдите какие-нибудь четыре попарно различных натуральных числа <i>a, b, c, d</i>, для которых числа  <i>a</i>² + 2<i>cd + b</i>²  и  <i>c</i>² + 2<i>ab + d</i>²  являются полными квадратами.

У отца спросили, сколько лет двум его сыновьям. Отец ответил, что если к произведению их возрастов добавить сумму этих возрастов, то получится 34.

Сколько лет сыновьям?

Зная, что число 1993 простое, выясните, существуют ли такие натуральные числа <i>x</i> и <i>y</i>, что

  а)  <i>x</i>² – <i>y</i>² = 1993;

  б)  <i>x</i>³ – <i>y</i>³ = 1993;

  в)  <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = 1993?

Подсчитать сумму цифр числа (999..99)<sup>3</sup>(в скобке 2002 девятки).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка