Олимпиадные задачи по математике для 9 класса

В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что  <i>СЕ = CD</i>.

Дан квадрат <i>ABCD</i>. На стороне <i>AD</i> внутрь квадрата построен равносторонний треугольник <i>ADE</i>. Диагональ <i>AC</i> пересекает сторону <i>ED</i> этого треугольника в точке <i>F</i>. Докажите, что  <i>CE = CF</i>.

Дан равнобедренный треугольник <i>ABC</i> с основанием <i>AC</i>. Доказать, что конец <i>D</i> отрезка <i>BD</i>, выходящего из вершины <i>B</i>, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Даны две окружности, касающиеся друг друга внутренним образом в точке <i>A</i>); из точки <i>B</i> большей окружности, диаметрально противоположной точке <i>A</i>, проведена касательная <i>BC</i> к меньшей окружности. Прямые <i>BC</i> и <i>AC</i> пересекает большую окружность в точках <i>D</i> и <i>E</i> соответственно. Докажите, что дуги <i>DE</i> и <i>BE</i> равны.

Диагонали <i>AC</i> и <i>BD</i> равнобедренной трапеции <i>ABCD</i> пересекаются в точке <i>O</i>; известно также, что в трапецию можно вписать окружность.

Докажите, что  ∠<i>BOC</i> > 60°.

Вокруг равнобедренного треугольника <i>ABC</i> с основанием <i>AC</i> описана окружность ω. Точка <i>F</i> – ортоцентр треугольника <i>ABC</i>; продолжение высоты <i>CE</i> пересекает ω в точке <i>G</i>. Докажите, что высота <i>AD</i> является касательной к описанной окружности треугольника <i>GBF</i>.

В треугольнике <i>ABC</i> высота <i>BD</i> образует со стороной <i>BC</i> угол в 45°. Считается, что прямая <i>BD</i>, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника <i>ABC</i>?

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$.

В треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно. Известно, что $BH$ – биссектриса угла $ABO$. Отрезок из точки $O$, параллельный стороне $AB$, пересекает сторону $AC$ в точке $K$. Докажите, что $AH=AK$.

Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.

Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

У равносторонних треугольников $ABC$ и $CDE$ вершина $C$ лежит на отрезке $AE$, вершины $B$ и $D$ по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами $O_1$ и $O_2$ повторно пересекаются в точке $F$. Прямая $O_1O_2$ пересекает $AD$ в точке $K$. Докажите, что $AK=BF$.

Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$?

В равнобедренной трапеции <i>ABCD</i> с основаниями <i>BC</i> и <i>AD</i> диагонали <i>AC</i> и <i>BD</i> перпендикулярны. Из точки <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>, а из точки <i>C</i> – перпендикуляр <i>CF</i> на прямую <i>DE</i>. Докажите, что  ∠<i>DBF</i> = ½ ∠<i>FCD</i>.

На стороне <i>AD</i> квадрата <i>ABCD</i> во внутреннюю сторону построен тупоугольный равнобедренный треугольник <i>AED</i>. Вокруг него описана окружность и проведён её диаметр <i>AF</i>, на стороне <i>CD</i> выбрана точка <i>G</i> так, что  <i>CG = DF</i>.  Докажите, что угол <i>BGE</i> меньше половины угла <i>AED</i>.

На окружности радиуса <i>R</i> с диаметром <i>AD</i> и центром <i>O</i> выбраны точки <i>B</i> и <i>С</i> по одну сторону от этого диаметра. Около треугольников <i>ABO</i> и <i>CDO</i> описаны окружности, пересекающие отрезок <i>BC</i> в точках <i>F</i> и <i>E</i>. Докажите, что  <i>AF·DE = R</i>².

Дан четырёхугольник <i>ABCD</i>, в котором  <i>AC = BD = AD</i>;  точки <i>E</i> и <i>F</i> – середины <i>AB</i> и <i>CD</i> соответственно; <i>O</i> – точка пересечения диагоналей четырёхугольника. Докажите, что <i>EF</i> проходит через точки касания вписанной окружности треугольника <i>AOD</i> с его сторонами <i>AO</i> и <i>OD</i>.

Вокруг прямоугольного треугольника <i>ABC</i> с прямым углом <i>C</i> описана окружность, на меньших дугах <i>AC</i> и <i>BC</i> взяты их середины – <i>K</i> и <i>P</i> соответственно. Отрезок <i>KP</i> пересекает катет <i>AC</i> в точке <i>N</i>. Центр вписанной окружности треугольника <i>ABC – I</i>. Найти угол <i>NIC</i>.

Вокруг равнобедренного треугольника <i>ABC</i> с основанием <i>AB</i> описана окружность и в точке <i>B</i> проведена касательная к ней. Из точки <i>C</i> проведён перпендикуляр <i>CD</i> к этой касательной, также проведены высоты <i>AE</i> и <i>BF</i>. Докажите, что точки <i>D, E, F</i> лежат на одной прямой.

Дан прямоугольный треугольник <i>ABC</i>. На катете <i>AB</i> во внешнюю сторону построен равносторонний треугольник <i>ADB</i>, а на гипотенузе <i>AC</i> во внутреннюю сторону – равносторонний треугольник <i>AEC</i>. Прямые <i>DE</i> и <i>AB</i> пересекаются в точке <i>M</i>. Весь чертёж стерли, оставив только точки <i>A</i> и <i>B</i>. Восстановите точку <i>M</i>.

В треугольнике <i>ABC  AB = BC</i>. Из точки <i>E</i> на стороне <i>AB</i> опущен перпендикуляр <i>ED</i> на <i>BC</i>. Оказалось, что  <i>AE = ED</i>.  Найдите угол <i>DAC</i>.

В пятиугольнике <i>ABCDE</i> углы <i>ABC</i> и <i>AED</i> – прямые,  <i>AB = AE</i>  и  <i>BC = CD = DE</i>.  Диагонали <i>BD</i> и <i>CE</i> пересекаются в точке <i>F</i>.

Докажите, что  <i>FA = AB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка