Олимпиадные задачи по математике для 2-11 класса - сложность 3 с решениями
Дан выпуклый четырёхугольник<i> ABMC </i>, в котором<i> AB=BC </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> BAM = </i>30<i><sup>o</sup> </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> ACM= </i>150<i><sup>o</sup> </i>. Докажите, что<i> AM </i>– биссектриса угла<i> BMC </i>.
На основании <i>AB</i> равнобедренного треугольника <i>ABC</i> выбрана точка <i>D</i> так, что окружность, вписанная в треугольник <i>BCD</i>, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков <i>CA</i> и <i>CD</i> и отрезка <i>AD</i> (вневписанная окружность треугольника <i>ACD</i>). Докажите, что этот радиус равен одной четверти высоты треугольника <i>ABC</i>, опущенной на его боковую сторону.
В треугольнике<i> ABC </i>известно, что<i> AA</i>1– медиана,<i> AA</i>2– биссектриса,<i> K </i>– такая точка на<i> AA</i>1, для которой<i> KA</i>2<i> || AC </i>. Докажите, что<i> AA</i>2<i> <img src="/storage/problem-media/108188/problem_108188_img_2.gif"> KC </i>.
Вокруг треугольника <i>ABC</i> описана окружность, к ней через точки <i>A</i> и <i>B</i> проведены касательные, которые пересекаются в точке <i>M</i>. Точка <i>N</i> лежит на стороне <i>BC</i>, причём прямая <i>MN</i> параллельна стороне <i>AC</i>. Докажите, что <i>AN = NC</i>.
В окружность вписан прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>. Пусть <i>K</i> – середина дуги <i>BC</i>, не содержащей точку <i>A, N</i> – середина отрезка <i>AC, M</i> – точка пересечения луча <i>KN</i> с окружностью. В точках <i>A</i> и <i>C</i> проведены касательные к окружности, которые пересекаются в точке <i>E</i>. Докажите, что
∠<i>EMK</i> = 90°.
Точки<i>A</i>и<i>B</i>, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах<i>AB</i>.
Угол при вершине <i>A</i> равнобедренного треугольника <i>ABC</i> (<i>AB = AC</i>) равен 20°. На стороне <i>AB</i> отложим отрезок <i>AD</i>, равный <i>BC</i>. Найдите угол <i>BCD</i>.
В трапеции <i>ABCD AB</i> – основание, <i>AC = BC</i>, <i>H</i> – середина <i>AB</i>. Пусть <i>l</i> – прямая, проходящая через точку <i>H</i> и пересекающая прямые <i>AD</i> и <i>BD</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что либо углы <i>ACP</i> и <i>QCB</i> равны, либо их сумма равна 180°.
На стороне <i>AB</i> треугольника <i>ABC</i> внешним образом построен квадрат с центром <i>O</i>. Точки <i>M</i> и <i>N</i> середины сторон <i>AC</i> и <i>BC</i> соответственно, а длины этих сторон равны соответственно <i>a</i> и <i>b</i>. Найти максимум суммы <i>OM + ON</i>, когда угол <i>ACB</i> меняется.
В треугольнике <i>ABC</i> угол <i>A</i> равен α, <i>BC = a</i>. Вписанная окружность касается прямых <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i>.
Найти длину хорды, высекаемой на прямой <i>MP</i> окружностью с диаметром <i>BC</i>.
Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?
Внутри квадрата<i>ABCD</i>расположен квадрат<i>KMXY</i>. Докажите, что середины отрезков<i>AK</i>,<i>BM</i>,<i>CX</i>и<i>DY</i>также являются вершинами квадрата.
Внутренняя точка <i>M</i> выпуклого четырёхугольника <i>ABCD</i> такова, что треугольники <i>AMB</i> и <i>CMD</i> – равнобедренные с углом величиной 120° при вершине <i>M</i>.
Докажите существование такой точки <i>N</i>, что треугольники <i>BNC</i> и <i>DNA</i> – правильные.
Правильный шестиугольник разрезан на <i>N</i> равновеликих параллелограммов. Доказать, что <i>N</i> делится на 3.
Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
Окружность <i>S</i><sub>1</sub> касается сторон угла <i>ABC</i> в точках <i>A</i> и <i>C</i>. Окружность <i>S</i><sub>2</sub> касается прямой <i>AC</i> в точке <i>C</i> и проходит через точку <i>B</i>. Окружность <i>S</i><sub>1</sub> она пересекает в точке <i>M</i>. Докажите, что прямая <i>AM</i> делит отрезок <i>BC</i> пополам.
На диаметре <i>AC</i> некоторой окружности дана точка <i>E</i>. Проведите через неё хорду <i>BD</i> так, чтобы площадь четырёхугольника <i>ABCD</i> была наибольшей.
Четырёхугольник $ABCD$ вписан в окружность, $DC = m$, $DA = n$. На стороне $BA$ взяты точки $A_1$ и $K$, а на стороне $BC$ – точки $C_1$ и $M$. Известно, что $BA_1 = a$, $BC_1 = c$, $BK = BM$ и что отрезки $A_1M$ и $C_1K$ пересекаются на диагонали $BD$. Найдите $BK$ и $BM$.
Внутри треугольника <i>ABC</i> с острыми углами при вершинах <i>A</i> и <i>C</i> взята точка <i>K</i>, причём ∠<i>AKB</i> = 90°, ∠<i>CKB</i> = 180° – ∠<i>C</i>.
В каком отношении прямая <i>BK</i> делит сторону <i>AC</i>, если высота, опущенная на <i>AC</i>, делит эту сторону в отношении λ, считая от вершины <i>A</i>?
На сторонах <i>AB, BC</i> и <i>CA</i> треугольника <i>ABC</i> зелёной краской отметили соответственно точки <i>C</i><sub>1</sub>, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub>, отличные от вершин треугольника. Оказалось, что <i>AC</i><sub>1</sub> : <i>C</i><sub>1</sub><i>B = BA</i><sub>1</sub> : <i>A</i><sub>1</sub><i>C = CB</i><sub>1</sub> : <i>B</i><sub>1</sub><i>A</i>, а ∠<i>A</i> = ∠<i>B</i><sub>1</sub><i>A</i><sub>1</sub><i>C</i><sub>1</sub>....
В тетраэдре <i>DABC</i> ∠<i>ACB</i> = ∠<i>ADB</i>, ребро <i>СD</i> перпендикулярно плоскости <i>АВС</i>. В треугольнике <i>АВС</i> дана высота <i>h</i>, проведённая к стороне <i>АВ</i>, и расстояние <i>d</i> от центра описанной окружности до этой стороны. Найдите <i>CD</i>.
Дан квадрат <i>ABCD</i>. Найдите геометрическое место точек <i>M</i> таких, что ∠<i>AMB</i> = ∠<i>CMD</i>.