Олимпиадные задачи по математике для 11 класса
Дан многочлен <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>. Положим <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.
Докажите, что <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...
Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.
Докажите, что <img align="absmiddle" src="/storage/problem-media/110180/problem_110180_img_2.gif"> для <i>x</i> > 0 и натурального <i>n</i>.
По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif"> если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном <i>a</i><sub>0</sub> > 5 в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.
Последовательность {<i>a<sub>n</sub></i>} строится следующим образом: <i>a</i><sub>1</sub> = <i>p</i> – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.
Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число; <i>a</i><sub><i>n</i>+1</sub> = ⅕ <i>a<sub>n</sub></i>, если <i>a<sub>n</sub></i> делится на 5;
<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>], если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.
Даны многочлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) с целыми неотрицательными коэффициентами, <i>m</i> – наибольший коэффициент многочлена <i>f</i>. Известно, что для некоторых натуральных чисел <i>a < b</i> имеют место равенства <i>f</i>(<i>a</i>) = <i>g</i>(<i>a</i>) и <i>f</i>(<i>b</i>) = <i>g</i>(<i>b</i>). Докажите, что если <i>b > m</i>, то многочлены <i>f</i> и <i>g</i> совпадают.
Докажите, что для любого натурального числа <i>n</i> > 10000 найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что
0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .
Докажите неравенство sin<sup><i>n</i></sup>2<i>x</i> + (sin<i><sup>n</sup>x</i> – cos<i><sup>n</sup>x</i>)² ≤ 1.
Выпуклый многоугольник<i> M </i>переходит в себя при повороте на угол90<i><sup>o</sup> </i>. Докажите, что найдутся два круга с отношением радиусов, равным<i> <img src="/storage/problem-media/109654/problem_109654_img_2.gif"> </i>, один из которых содержит<i> M </i>, а другой содержится в<i> M </i>.
Сумма положительных чисел <i>a, b, c</i> и <i>d</i> равна 3. Докажите неравенство <sup>1</sup>/<sub><i>a</i>³</sub> + <sup>1</sup>/<sub><i>b</i>³</sub> + <sup>1</sup>/<sub><i>c</i>³</sub> + <sup>1</sup>/<sub><i>d</i>³</sub> ≤ <sup>1</sup>/<sub><i>a</i>³<i>b</i><sup>3</sup><i>c</i>³<i>d</i>³</sub>.
Положительные числа <i>x, y</i> и <i>z</i> удовлетворяют условию <i>xyz ≥ xy + yz + zx</i>. Докажите неравенство <img align="absmiddle" src="/storage/problem-media/65705/problem_65705_img_2.png">
Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем <sup>1</sup>/<sub>2016</sub>.
Квадратный трёхчлен <i>f</i>(<i>x</i>) имеет два различных корня. Оказалось, что для любых чисел <i>a</i> и <i>b</i> верно неравенство <i>f</i>(<i>a</i>² + <i>b</i>²) ≥ <i>f</i>(2<i>ab</i>).
Докажите, что хотя бы один из корней этого трёхчлена – отрицательный.
Дана функция <i>f</i>, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых <i>x</i> и <i>y</i>, таких, что <i>x > y</i>, верно неравенство (<i>f</i>(<i>x</i>))² ≤ <i>f</i>(<i>y</i>). Докажите, что множество значений функции содержится в промежутке [0,1].
Положительные числа <i>a, b, c</i> и <i>d</i> удовлетворяют условию 2(<i>a + b + c + d</i>) ≥ <i>abcd</i>. Докажите, что <i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>² ≥ <i>abcd</i>.