Олимпиадные задачи по математике для 11 класса

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (<i>A, B</i>)  назовём <i>необычной</i>, если <i>A</i> – самая дальняя от <i>B</i> отмеченная точка, а <i>B</i> – ближайшая к <i>A</i> отмеченная точка (не считая самой точки <i>A</i>). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.

Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

Hа плоскости даны две окружности <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и радиусами 2<i>R</i> и <i>R</i> соответственно (<i>O</i><sub>1</sub><i>O</i><sub>2</sub> <i>></i> 3<i>R</i>). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на <i>C</i><sub>1</sub>, а две другие — на <i>C</i><sub>2</sub>.

Bыпуклый <i>n</i>-угольник <i>P</i>, где  <i>n</i> > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.

Каковы возможные значения <i>n</i>, если <i>n</i>-угольник вписанный?

На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.

На окружности отметили <i>n</i> точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.

Найдите все значения <i>n</i>, при которых это возможно.

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Через каждую вершину неравнобедренного треугольника <i>ABC</i> проведён отрезок, разбивающий его на два треугольника с равными периметрами.

Верно ли, что все эти отрезки имеют разные длины?

Дан выпуклый <i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A<sub>n</sub></i>. Пусть <i>P<sub>i</sub></i>  (<i>i</i> = 1, ..., <i>n</i>)  – такая точка на его границе, что прямая <i>A<sub>i</sub>P<sub>i</sub></i> делит его площадь пополам. Известно, что все точки <i>P<sub>i</sub></i> не совпадают с вершинами и лежат на <i>k</i> сторонах <i>n</i>-угольника. Каково  а) наименьшее;  б) наибольшее возможное значение <i>k</i> при каждом данном <i>n</i>?

На плоскости даны три параллельные прямые.

Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?

Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего <i>n</i>-угольника с его вершинами, делят <i>n</i>-угольник на <i>n</i> равных треугольников.

При каком наименьшем <i>n</i> это возможно?

Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

Решите систему уравнений  (<i>n</i> > 2)      <img align="middle" src="/storage/problem-media/111649/problem_111649_img_2.gif">   <img align="middle" src="/storage/problem-media/111649/problem_111649_img_3.gif">     <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = 1.

Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...,  такая, что  <i>P</i>(<i>a</i><sub>1</sub>) = 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Докажите, что не все числа в последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  различны.

Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  такова, что  <i>P</i>(<i>a</i><sub>1</sub>)= 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?

В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся. На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре <i>k</i>-е место по числу голосов. Определ...

Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.

Найдите расстановку чисел, при которой полученная сумма наибольшая.

Дан многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... такова, что

<i>P</i>(<i>a</i><sub>1</sub>) = 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>,  и т.д. Какую степень может иметь <i>P</i>(<i>x</i>)?

Дано натуральное число $n$. Натуральное число $m$ назовём<i>удачным</i>, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.

На плоскости расположены круг и правильный 100-угольник, имеющие одинаковые площади. Какое наибольшее количество вершин 100-угольника может находиться внутри круга (не на границе)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка